DOI QR코드

DOI QR Code

Reaction Times to Predictable Visual Patterns Reflect Neural Responses in Early Visual Cortex

  • Received : 2021.04.15
  • Accepted : 2021.05.14
  • Published : 2021.06.30

Abstract

It has long been speculated that the visual system should use a coding strategy that takes advantage of statistical redundancies in images. But how such a coding strategy should manifest in neural responses has been less clear. Low-level image structure related to the power spectrum of natural images appears to be captured by a hard-wired efficient code in the retina of the fly and precortical structures like the LGN of cats that maximizes information content through the limited capacity channel of the optic nerve. But visual images are typically filled with higher-order structure beyond that captured by the power spectrum and visual cortex is not constrained by the same capacity limits as the optic nerve. Whether and how visual cortex can flexibly code for higher order redundancies is unknown. Here we show using psychophysical techniques that the neural response in early human visual cortex may be modulated by orientation redundancies in images such that a visual feature that is contained within a predictive pattern results in slower reaction times than a feature that deviates from a pattern, suggesting lower neural responses to predictable stimuli in the visual cortex. Our results point to a neural response in early visual cortex that is sensitive to global patterns and redundancies in visual images and is in marked contrast to standard models of cortical visual processing.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1C1C1009383) and by Pusan National University Research Grant, 2018

References

  1. Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284-299. DOI: 10.1364/JOSAA.2.000284
  2. Albright, T. D. & Stoner, G. R. (2002). Contextual influences on visual processing. Annual Reviews of Neuroscience, 25, 339-379. DOI: 10.1146/annurev.neuro.25.112701.142900
  3. Allman, J., Miezin, F., & McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Reviews of Neuroscience, 8, 407-430. https://doi.org/10.1146/annurev.ne.08.030185.002203
  4. Angelucci, A. & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93-120. DOI: 10.1146/annurev.ne.08.030185.002203
  5. Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61, 183-193. DOI: 10.1037/h0054663
  6. Bair, W., Cavanaugh, J. R., & Movshon, J. A. (2003). Time course and time-distance relationships for surround suppression in macaque V1 neurons. Journal of Neuroscience, 23, 7690-7701. DOI: 10.1523/JNEUROSCI.23-20-07690.2003
  7. Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. in Sensory Communication (ed. Rosenblith, W. A.), pp 217-234, MIT Press, Cambridge, Massachusetts.
  8. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436. https://doi.org/10.1163/156856897X00357
  9. Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B., Gallant, J. L., & Rust, N. C. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25, 10577-10597. DOI: 10.1523/JNEUROSCI.3726-05.2005
  10. Carandini, M., Heeger, D. J., & Movshon, J. A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience, 17, 8621-8644. DOI: 10.1523/JNEUROSCI.17-21-08621.1997
  11. Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002a). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2530-2546. DOI: 10.1152/jn.00692.2001
  12. Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002b). Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2547-2556. DOI: 10.1152/jn.00693.2001
  13. Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the human visual system: Evidence for a local "association field". Vision Research, 33, 173-193. DOI: 10.1016/0042-6989(93)90156-q
  14. Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology, 10, 438-443. DOI: 10.1016/S0959-4388(00)00113-6
  15. Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181-197. DOI: 10.1017/S0952523800009640
  16. Jones, J. P. & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1233-1258. DOI: 10.1152/jn.1987.58.6.1233
  17. Joo, S. J., Boynton, G. M., & Murray, S. O. (2012). Long-range, pattern-dependent contextual effects in early human visual cortex. Current Biology, 22, 781-786. DOI: 10.1016/j.cub.2012.02.067
  18. Joo, S. J. & Murray, S. O. (2014). Contex tual effects in human visual cortex depend on surface structure. Journal of Neurophysiology, 111, 1783-1791. DOI: 10.1152/jn.00671.2013
  19. Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (2000). Spatial distribution of contextual interactions in primary visual cortex and in visual perception. Journal of Neurophysiology, 84, 2048-2062. DOI: 10.1152/jn.2000.84.4.2048
  20. Kastner, S., Nothdurft, H. C., & Pigarev, I. N. (1997). Neuronal correlates of pop-out in cat striate cortex. Vision Research, 37, 371-376. DOI: 10.1016/s0042-6989(96)00184-8
  21. Kim, T., Kwon, D., & Yi, D. -J. (2020). Effects of low-level visual attributes on threat detection: Testing the snake detection theory. Science of Emotion & Sensibility, 23, 47-62. DOI: 10.14695/KJSOS.2020.23.3.47
  22. Knierim, J. J. & van Essen, D. C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67, 961-980. DOI: 10.1152/jn.1992.67.4.961
  23. Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5, eaaw4358. DOI: 10.1126/sciadv.aaw4358
  24. Lamme, V. A. (1995). The neurophysiology of figure-ground segregation in primary visual cortex. Journal of Neuroscience, 15, 1605-1615. DOI: 10.1523/JNEUROSCI.15-02-01605.1995
  25. Lee, T. S. & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America. A, Optics, image science, and vision, 20, 1434-1448. DOI: 10.1364/josaa.20.001434
  26. Lennie, P. & Movshon, J. A. (2005). Coding of color and form in the geniculostriate visual pathway (invited review). Journal of the Optical Society of America A, 22, 2013-2033. DOI: 10.1364/josaa.22.002013
  27. Li, X., Lu, Z. L., Xu, P., Jin, J., & Zhou, Y. (2003). Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors. Journal of Neuroscience Methods, 130, 9-18. DOI: 10.1016/s0165-0270(03)00174-2
  28. Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. Journal of Physiology, 283, 101-120. DOI: 10.1113/jphysiol.1978.sp012490
  29. Nothdurft, H. C., Gallant, J. L., & Van Essen, D. C. (1999). Response modulation by texture surround in primate area V1: Correlates of "popout" under anesthesia. Visual Neuroscience, 16, 15-34. DOI: 10.1017/s0952523899156189
  30. Olshausen, B. A. & Field, D. J. (2005). How close are we to understanding V1? Neural Computation, 17, 1665-1699. DOI: 10.1162/0899766054026639
  31. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442. https://doi.org/10.1163/156856897X00366
  32. Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T., & Norcia, A. M. (1998). Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature, 391, 580-584. DOI: 10.1038/35372
  33. Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160-174. https://doi.org/10.1037/0096-3445.109.2.160
  34. Rao, R. P. & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79-87. DOI: 10.1038/4580
  35. Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455-463. DOI: 10.1152/jn.2002.88.1.455
  36. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225-237. DOI: 10.3758/PBR.16.2.225
  37. Rust, N. C. & Movshon, J. A. (2005). In praise of artifice. Nature Neuroscience, 8, 1647-1650. DOI: 10.1038/nn1606
  38. Shapley, R. (2004). A new view of the primary visual cortex. Neural Networks, 17, 615-623. DOI: 10.1016/j.neunet.2004.03.006
  39. Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. (1995). Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496. DOI: 10.1038/378492a0
  40. Schwartz, O. & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience, 4, 819-825. DOI: 10.1038/90526
  41. Zipser, K., Lamme, V. A., & Schiller, P. H. (1996). Contextual modulation in primary visual cortex. Journal of Neuroscience, 16, 7376-7389. DOI: 10.1523/JNEUROSCI.16-22-07376.1996