Browse > Article
http://dx.doi.org/10.14695/KJSOS.2021.24.2.57

Reaction Times to Predictable Visual Patterns Reflect Neural Responses in Early Visual Cortex  

Joo, Sung Jun (Department of Psychology)
Publication Information
Science of Emotion and Sensibility / v.24, no.2, 2021 , pp. 57-64 More about this Journal
Abstract
It has long been speculated that the visual system should use a coding strategy that takes advantage of statistical redundancies in images. But how such a coding strategy should manifest in neural responses has been less clear. Low-level image structure related to the power spectrum of natural images appears to be captured by a hard-wired efficient code in the retina of the fly and precortical structures like the LGN of cats that maximizes information content through the limited capacity channel of the optic nerve. But visual images are typically filled with higher-order structure beyond that captured by the power spectrum and visual cortex is not constrained by the same capacity limits as the optic nerve. Whether and how visual cortex can flexibly code for higher order redundancies is unknown. Here we show using psychophysical techniques that the neural response in early human visual cortex may be modulated by orientation redundancies in images such that a visual feature that is contained within a predictive pattern results in slower reaction times than a feature that deviates from a pattern, suggesting lower neural responses to predictable stimuli in the visual cortex. Our results point to a neural response in early visual cortex that is sensitive to global patterns and redundancies in visual images and is in marked contrast to standard models of cortical visual processing.
Keywords
Predictive Coding; Reaction Time; Redundancy Reduction; Visual Pattern;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, X., Lu, Z. L., Xu, P., Jin, J., & Zhou, Y. (2003). Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors. Journal of Neuroscience Methods, 130, 9-18. DOI: 10.1016/s0165-0270(03)00174-2   DOI
2 Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology, 10, 438-443. DOI: 10.1016/S0959-4388(00)00113-6   DOI
3 Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225-237. DOI: 10.3758/PBR.16.2.225   DOI
4 Kim, T., Kwon, D., & Yi, D. -J. (2020). Effects of low-level visual attributes on threat detection: Testing the snake detection theory. Science of Emotion & Sensibility, 23, 47-62. DOI: 10.14695/KJSOS.2020.23.3.47   DOI
5 Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5, eaaw4358. DOI: 10.1126/sciadv.aaw4358   DOI
6 Lamme, V. A. (1995). The neurophysiology of figure-ground segregation in primary visual cortex. Journal of Neuroscience, 15, 1605-1615. DOI: 10.1523/JNEUROSCI.15-02-01605.1995   DOI
7 Lennie, P. & Movshon, J. A. (2005). Coding of color and form in the geniculostriate visual pathway (invited review). Journal of the Optical Society of America A, 22, 2013-2033. DOI: 10.1364/josaa.22.002013   DOI
8 Nothdurft, H. C., Gallant, J. L., & Van Essen, D. C. (1999). Response modulation by texture surround in primate area V1: Correlates of "popout" under anesthesia. Visual Neuroscience, 16, 15-34. DOI: 10.1017/s0952523899156189   DOI
9 Olshausen, B. A. & Field, D. J. (2005). How close are we to understanding V1? Neural Computation, 17, 1665-1699. DOI: 10.1162/0899766054026639   DOI
10 Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T., & Norcia, A. M. (1998). Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature, 391, 580-584. DOI: 10.1038/35372   DOI
11 Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160-174.   DOI
12 Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455-463. DOI: 10.1152/jn.2002.88.1.455   DOI
13 Shapley, R. (2004). A new view of the primary visual cortex. Neural Networks, 17, 615-623. DOI: 10.1016/j.neunet.2004.03.006   DOI
14 Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the human visual system: Evidence for a local "association field". Vision Research, 33, 173-193. DOI: 10.1016/0042-6989(93)90156-q   DOI
15 Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. in Sensory Communication (ed. Rosenblith, W. A.), pp 217-234, MIT Press, Cambridge, Massachusetts.
16 Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.   DOI
17 Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B., Gallant, J. L., & Rust, N. C. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25, 10577-10597. DOI: 10.1523/JNEUROSCI.3726-05.2005   DOI
18 Carandini, M., Heeger, D. J., & Movshon, J. A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience, 17, 8621-8644. DOI: 10.1523/JNEUROSCI.17-21-08621.1997   DOI
19 Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002b). Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2547-2556. DOI: 10.1152/jn.00693.2001   DOI
20 Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181-197. DOI: 10.1017/S0952523800009640   DOI
21 Jones, J. P. & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1233-1258. DOI: 10.1152/jn.1987.58.6.1233   DOI
22 Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002a). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2530-2546. DOI: 10.1152/jn.00692.2001   DOI
23 Kastner, S., Nothdurft, H. C., & Pigarev, I. N. (1997). Neuronal correlates of pop-out in cat striate cortex. Vision Research, 37, 371-376. DOI: 10.1016/s0042-6989(96)00184-8   DOI
24 Joo, S. J., Boynton, G. M., & Murray, S. O. (2012). Long-range, pattern-dependent contextual effects in early human visual cortex. Current Biology, 22, 781-786. DOI: 10.1016/j.cub.2012.02.067   DOI
25 Joo, S. J. & Murray, S. O. (2014). Contex tual effects in human visual cortex depend on surface structure. Journal of Neurophysiology, 111, 1783-1791. DOI: 10.1152/jn.00671.2013   DOI
26 Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (2000). Spatial distribution of contextual interactions in primary visual cortex and in visual perception. Journal of Neurophysiology, 84, 2048-2062. DOI: 10.1152/jn.2000.84.4.2048   DOI
27 Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. Journal of Physiology, 283, 101-120. DOI: 10.1113/jphysiol.1978.sp012490   DOI
28 Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. (1995). Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496. DOI: 10.1038/378492a0   DOI
29 Bair, W., Cavanaugh, J. R., & Movshon, J. A. (2003). Time course and time-distance relationships for surround suppression in macaque V1 neurons. Journal of Neuroscience, 23, 7690-7701. DOI: 10.1523/JNEUROSCI.23-20-07690.2003   DOI
30 Rao, R. P. & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79-87. DOI: 10.1038/4580   DOI
31 Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284-299. DOI: 10.1364/JOSAA.2.000284   DOI
32 Albright, T. D. & Stoner, G. R. (2002). Contextual influences on visual processing. Annual Reviews of Neuroscience, 25, 339-379. DOI: 10.1146/annurev.neuro.25.112701.142900   DOI
33 Lee, T. S. & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America. A, Optics, image science, and vision, 20, 1434-1448. DOI: 10.1364/josaa.20.001434   DOI
34 Allman, J., Miezin, F., & McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Reviews of Neuroscience, 8, 407-430.   DOI
35 Angelucci, A. & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93-120. DOI: 10.1146/annurev.ne.08.030185.002203   DOI
36 Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61, 183-193. DOI: 10.1037/h0054663   DOI
37 Rust, N. C. & Movshon, J. A. (2005). In praise of artifice. Nature Neuroscience, 8, 1647-1650. DOI: 10.1038/nn1606   DOI
38 Schwartz, O. & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience, 4, 819-825. DOI: 10.1038/90526   DOI
39 Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442.   DOI
40 Zipser, K., Lamme, V. A., & Schiller, P. H. (1996). Contextual modulation in primary visual cortex. Journal of Neuroscience, 16, 7376-7389. DOI: 10.1523/JNEUROSCI.16-22-07376.1996   DOI
41 Knierim, J. J. & van Essen, D. C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67, 961-980. DOI: 10.1152/jn.1992.67.4.961   DOI