• Title/Summary/Keyword: Vision-based

Search Result 3,438, Processing Time 0.039 seconds

Study on the Target Tracking of a Mobile Robot Using Active Stereo-Vision System (능동 스테레오 비젼을 시스템을 이용한 자율이동로봇의 목표물 추적에 관한 연구)

  • 이희명;이수희;이병룡;양순용;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.915-919
    • /
    • 2003
  • This paper presents a fuzzy-motion-control based tracking algorithm of mobile robots, which uses the geometrical information derived from the active stereo-vision system mounted on the mobile robot. The active stereo-vision system consists of two color cameras that rotates in two angular dimensions. With the stereo-vision system, the center position and depth information of the target object can be calculated. The proposed fuzzy motion controller is used to calculate the tracking velocity and angular position of the mobile robot, which makes the mobile robot keep following the object with a constant distance and orientation.

  • PDF

Real Time Vision System for the Test of Steam Generator in Nuclear Power Plants Based on Fuzzy Membership Function (퍼지 소속 함수에 기초한 원전 증기발생기 검사용 실시간 비젼시스템)

  • 왕한흥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.107-112
    • /
    • 1996
  • In this paper it is proposed a new approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. In nuclear power plants workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from the radiation exposure. Digital signal processors are used in implementing real time recognition and examination of steam generator tubes in the preposed vision system, Performance of proposed digital vision system is illustrated by experiment for similar steam generator model.

  • PDF

Measurement of GMAW Bead Geometry Using Biprism Stereo Vision Sensor (바이프리즘 스테레오 시각 센서를 이용한 GMA 용접 비드의 3차원 형상 측정)

  • 이지혜;이두현;유중돈
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.200-207
    • /
    • 2001
  • Three-diemnsional bead profile was measured using the biprism stereo vision sensor in GMAW, which consists of an optical filter, biprism and CCD camera. Since single CCD camera is used, this system has various advantages over the conventional stereo vision system using two cameras such as finding the corresponding points along the horizontal scanline. In this wort, the biprism stereo vision sensor was designed for the GMAW, and the linear calibration method was proposed to determine the prism and camera parameters. Image processing techniques were employed to find the corresponding point along the pool boundary. The ism-intensity contour corresponding to the pool boundary was found in the pixel order and the filter-based matching algorithm was used to refine the corresponding points in the subpixel order. Predicted bead dimensions were in broad agreements with the measured results under the conditions of spray mode and humping bead.

  • PDF

A Hierarchical Motion Controller for Soccer Robots with Stand-alone Vision System (독립 비젼 시스템 기반의 축구로봇을 위한 계층적 행동 제어기)

  • Lee, Dong-Il;Kim, Hyung-Jong;Kim, Sang-Jun;Jang, Jae-Wan;Choi, Jung-Won;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.133-141
    • /
    • 2002
  • In this paper, we propose a hierarchical motion controller with stand-alone vision system to enhance the flexibility of the robot soccer system. In addition, we simplified the model of dynamic environments of the robot using petri-net and simple state diagram. Based on the proposed model, we designed the robot soccer system with velocity and position controller that includes 4-level hierarchically structured controller. Some experimental results using the stand-alone vision system from host system show improvement of the controller performance by reducing processing time of vision algorithm.

The Moving Object Gripping Using Vision Systems (비젼 시스템을 이용한 이동 물체의 그립핑)

  • Cho, Ki-Heum;Choi, Byong-Joon;Jeon, Jae-Hyun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2357-2359
    • /
    • 1998
  • This paper proposes trajectory tracking of the moving object based on one camera vision system. And, this system proposes a method which robot manipulator grips moving object and predicts coordinate of moving objcet. The trajectory tracking and position coordinate are computed by vision data acquired to camera. Robot manipulator tracks and grips moving object by vision data. The proposed vision systems use a algorithm to do real-time processing.

  • PDF

Analysis of Requirements for Night Vision Imaging System (야시조명계통 요구도 분석)

  • Kwon, Jong-Kwang;Lee, Dae-Yearl;Kim, Whan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.51-61
    • /
    • 2007
  • This paper concerns about the requirement analysis for night vision imaging system(NVIS), whose purpose is to intensify the available nighttime near infrared(IR) radiation sufficiently to be caught by the human eyes on a miniature green phosphor screen. The requirements for NVIS are NVIS radiance(NR), chromaticity, daylight legibility/readability, etc. The NR is a quantitative measure of night vision goggle (NVG) compatibility of a light source as viewed through goggles. The chromaticity is the quality of a color as determined by its purity and dominant wavelength. The daylight legibility/readability is the degree at which words are readable based on appearance and a measure of an instrument's ability to display incremental changes in its output value. In this paper, the requirements of NR, chromaticity, and daylight legibility/readability for Type I and Class B/C NVIS are analyzed. Also the rationale is shown with respect to those requirements.

Automated Vision-based Construction Object Detection Using Active Learning (액티브 러닝을 활용한 영상기반 건설현장 물체 자동 인식 프레임워크)

  • Kim, Jinwoo;Chi, Seokho;Seo, JoonOh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.631-636
    • /
    • 2019
  • Over the last decade, many researchers have investigated a number of vision-based construction object detection algorithms for the purpose of construction site monitoring. However, previous methods require the ground truth labeling, which is a process of manually marking types and locations of target objects from training image data, and thus a large amount of time and effort is being wasted. To address this drawback, this paper proposes a vision-based construction object detection framework that employs an active learning technique while reducing manual labeling efforts. For the validation, the research team performed experiments using an open construction benchmark dataset. The results showed that the method was able to successfully detect construction objects that have various visual characteristics, and also indicated that it is possible to develop the high performance of an object detection model using smaller amount of training data and less iterative training steps compared to the previous approaches. The findings of this study can be used to reduce the manual labeling processes and minimize the time and costs required to build a training database.

Correlation Extraction from KOSHA to enable the Development of Computer Vision based Risks Recognition System

  • Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.87-95
    • /
    • 2020
  • Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.

  • PDF

Intelligent Rain Sensing and Fuzzy Wiper Control Algorithm for Vision-based Smart Windshield Wiper System

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1694-1699
    • /
    • 2003
  • A windshield wiper system plays a key part in assuring the driver's safety during the rainfall. However, because the quantity of rain and snow vary irregularly according to time and the velocity of the automobile, a driver changes wiper speed and interval from time to time to secure enough visual field in the traditional windshield wiper system. Because a manual operation of windshield wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming a direct cause of traffic accidents. Therefore, this paper presents the basic architecture of a vision-based smart windshield wiper system and a rain sensing algorithm that regulates speed and interval of the windshield wiper automatically according to the quantity of rain or snow. This paper also introduces a fuzzy wiper control algorithm based on human's expertise, and evaluates the performance of the suggested algorithm in an experimental simulator.

  • PDF

Vision-Based Eyes-Gaze Detection Using Two-Eyes Displacement

  • Ponglanka, Wirote;Kumhom, Pinit;Chamnongthai, Kosin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.46-49
    • /
    • 2002
  • One problem of vision-based eye-gazed detection is that it gives low resolution. Base on the displacement of the eyes, we proposed method for vision-based eye-gaze detection. While looking at difference positions on the screen, the distance of the centers of the eyes change accordingly. This relationship is derived and used to map the displacement to the distance in the screen. The experiments are performed to measure the accuracy and resolution to verify the proposed method. The results shown the accuracy of the screen mapping function for the horizontal plane are 76.47% and the error of this function be 23.53%

  • PDF