• 제목/요약/키워드: Vision Based Sensor

검색결과 428건 처리시간 0.035초

스테레오 비전 센서 기반 프리팹 강구조물 조립부 형상 품질 평가 (Dimensional Quality Assessment for Assembly Part of Prefabricated Steel Structures Using a Stereo Vision Sensor)

  • 김종혁;전해민
    • 한국전산구조공학회논문집
    • /
    • 제37권3호
    • /
    • pp.173-178
    • /
    • 2024
  • 본 논문에서는 스테레오 비전 센서를 이용한 프리팹 강구조물(PSS: Prefabricated Steel Structures)의 조립부 형상 품질 평가 기법을 소개한다. 스테레오 비전 센서를 통해 모형의 조립부 영상과 포인트 클라우드 데이터를 수집하였으며, 퍼지 기반 엣지 검출, 허프 변환 기반 원형의 볼트 홀 검출 등의 영상처리 알고리즘을 적용하여 조립부 영역의 볼트홀을 검출하였다. 영상 내 추출된 볼트홀 외곽선 위 세 점의 위치 정보에 대응되는 3차원 실세계 위치 정보를 깊이 영상으로부터 획득하였으며, 이를 기반으로 각 볼트홀의 3차원 중심 위치를 계산하였다. 통계적 기법 중 하나인 주성분 분석 알고리즘(PCA: Principal component analysis) 알고리즘을 적용함으로써 3차원 위치 정보를 대표하는 최적의 좌표축을 계산하였다. 이를 통해 센서의 설치 방향 및 위치에 따라 센서와 부재 간 평행이 아니더라도 안정적으로 볼트홀 간의 거리를 계측하도록 하였다. 각 볼트홀의 2차원 위치 정보를 기반으로 볼트홀의 순서를 정렬하였으며, 정렬된 볼트홀의 위치 정보를 바탕으로 인접한 볼트홀 간의 각 축의 거리 정보를 계산하여 조립부 볼트홀 위치 중심의 형상 품질을 분석하였다. 측정된 볼트홀 간의 거리 정보는 실제 도면의 거리 정보와의 절대오차와 상대오차를 계산하여 성능 비교를 진행하였으며, 중앙값 기준 1mm 내의 절대오차와 4% 이내의 상대오차의 계측 성능을 확인하였다.

Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures

  • Lee, Jong Jae;Fukuda, Yoshio;Shinozuka, Masanobu;Cho, Soojin;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.373-384
    • /
    • 2007
  • For structural health monitoring (SHM) of civil infrastructures, displacement is a good descriptor of the structural behavior under all the potential disturbances. However, it is not easy to measure displacement of civil infrastructures, since the conventional sensors need a reference point, and inaccessibility to the reference point is sometimes caused by the geographic conditions, such as a highway or river under a bridge, which makes installation of measuring devices time-consuming and costly, if not impossible. To resolve this issue, a visionbased real-time displacement measurement system using digital image processing techniques is developed. The effectiveness of the proposed system was verified by comparing the load carrying capacities of a steel-plate girder bridge obtained from the conventional sensor and the present system. Further, to simultaneously measure multiple points, a synchronized vision-based system is developed using master/slave system with wireless data communication. For the purpose of verification, the measured displacement by a synchronized vision-based system was compared with the data measured by conventional contact-type sensors, linear variable differential transformers (LVDT) from a laboratory test.

Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images

  • Choi, Yun-Won;Kwon, Kee-Koo;Lee, Soo-In;Choi, Jeong-Won;Lee, Suk-Gyu
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.913-923
    • /
    • 2014
  • This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.

2개의 비전 센서 및 딥 러닝을 이용한 도로 속도 표지판 인식, 자동차 조향 및 속도제어 방법론 (The Road Speed Sign Board Recognition, Steering Angle and Speed Control Methodology based on Double Vision Sensors and Deep Learning)

  • 김인성;서진우;하대완;고윤석
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.699-708
    • /
    • 2021
  • 본 논문에서는 2개의 비전 센서와 딥 러닝을 이용한 자율주행 차량의 속도제어 알고리즘을 제시하였다. 비전 센서 A로부터 제공되는 도로 속도 표지판 영상에 딥 러닝 프로그램인 텐서플로우를 이용하여 속도 표지를 인식한 후, 자동차가 인식된 속도를 따르도록 하는 자동차 속도 제어 알고리즘을 제시하였다. 동시에 비전 센서 B부터 전송되는 도로 영상을 실시간으로 분석하여 차선을 검출하고 조향 각을 계산하며 PWM 제어를 통해 전륜 차축을 제어, 차량이 차선을 추적하도록 하는 조향 각 제어 알고리즘을 개발하였다. 제안된 조향 각 및 속도 제어 알고리즘의 유효성을 검증하기 위해서 파이썬 언어, 라즈베리 파이 및 Open CV를 기반으로 하는 자동차 시작품을 제작하였다. 또한, 시험 제작한 트랙에서 조향 및 속도 제어에 관한 시나리오를 검증함으로써 정확성을 확인할 수 있었다.

초음파센서와 시각센서의 융합을 이용한 물체 인식에 관한 연구 (Ultrasonic and Vision Data Fusion for Object Recognition)

  • 고중협;김완주;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.417-421
    • /
    • 1992
  • Ultrasonic and vision data need to be fused for efficient object recognition, especially in mobile robot navigation. In the proposed approach, the whole ultrasonic echo signal is utilized and data fusion is performed based on each sensor's characteristic. It is shown to be effective through the experiment results.

  • PDF

실시간 이차원 지휘운동의 해석 (On-Line Two-Dimensional Conducting Motion Analysis)

  • 김종성;유범재;오상록
    • 전자공학회논문지B
    • /
    • 제28B권11호
    • /
    • pp.876-885
    • /
    • 1991
  • This paper proposes an on-line method of understanding humans conducting action observed through a vision sensor. The vision system captures images of conducting action and extracts image coordinates of endpoint of the baton. A proposed algorithm based on the expert knowledge about conducting recognizes patterns of the conducting action from the extracted image coordimates and play the corresponding music score. Complementary algorithms are also proposed for identifying the first beat static point and dynamics through extensive experiments, this algorithm is found to detect lower edges and upper edges without error.

  • PDF

GeoVision을 위한 멀티 센서 기반 운전 패턴 인식 (Recognition of Multi-sensor based Car Driving Patterns for GeoVision)

  • 송충원;남광우;이창우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1185-1187
    • /
    • 2011
  • 이 논문에서는 운전자의 운전 패턴을 분석하기 위한 멀티 센서 기반의 패턴 분석 알고리즘을 제안한다. 센서를 통해 얻어진 주행 데이터의 상관 관계를 비교, 분석하여 주행 패턴을 인식한다. 가속도 센서에 작용하는 중력값과 지자기 센서의 방향 데이터을 통해 각 운전 패턴을 인식하는 정확도를 높이는데 이용하였다.

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

환경 변화에 강인한 비전 기반 로봇 자율 주행 (Robust Vision-Based Autonomous Navigation Against Environment Changes)

  • 김정호;권인소
    • 대한임베디드공학회논문지
    • /
    • 제3권2호
    • /
    • pp.57-65
    • /
    • 2008
  • Recently many researches on intelligent robots have been studied. An intelligent robot is capable of recognizing environments or objects to autonomously perform specific tasks using sensor readings. One of fundamental problems in vision-based robot applications is to recognize where it is and to decide safe path to perform autonomous navigation. However, previous approaches only consider well-organized environments that there is no moving object and environment changes. In this paper, we introduce a novel navigation strategy to handle occlusions caused by moving objects using various computer vision techniques. Experimental results demonstrate the capability to overcome such difficulties for autonomous navigation.

  • PDF