• 제목/요약/키워드: Visible transmittance

Search Result 687, Processing Time 0.024 seconds

Development of textured ZnO:Al films for silicon thin film solar cells (실리콘 박막 태양전지용 텍스처링 ZnO:Al 박막 개발)

  • Cho, Jun-Sik;Kim, Young-Jin;Lee, Jeong-Chul;Park, Sang-Hyun;Song, Jin-Soo;Yoon, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.349-349
    • /
    • 2009
  • High quality ZnO:Al films were prepared on glass substrates by in-line RF magnetron sputtering and their surface morphologies were modified by wet-etching process in dilute acid solution to improve optical properties for application to silicon thin film solar cells as front electrode. The as-deposited films show a strong preferred orientation in [001] direction under our experimental conditions. A low resistivity below $5{\times}10^{-4}{\Omega}{\cdot}cm$ and high optical transmittance above 80% in a visible range are achieved in the films deposited at optimized conditions. After wet-etching, the surface morphologies of the films are changed dramatically depending on the deposition conditions, especially working pressure. The optical properties such as total/diffuse transmittance, haze and angular resolved distribution of light are varied significantly with the surface morphology feature, whereas the electrical properties are seldom changed. The cell performances of silicon thin film solar cells fabricated on the textured films are also evaluated in detail with comparison of commercial $SnO_2$:F films.

  • PDF

Effect of Ar Flow Ratio on the Characteristics of Ga-Doped ZnO Grown by RF Magnetron Sputtering (마그네트론 스퍼터를 이용한 Ar 가스 유량 조절에 따른 GZO의 특성 변화)

  • Jeong, Youngjin;Lee, Seungjin;Son, Changsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • The structural, optical, and electrical properties of Ga-doped ZnO (GZO) thin films on glass substrates grown by radio-frequency(RF) magnetron sputtering were investigated. The flow ratio of Ar was varied as a deposition parameter for growing high-quality GZO thin films. The structural properties and surface morphologies of GZO were characterized by the X-ray diffraction. To analyze the optical properties of GZO, the optical absorbance was measured in the wavelength range of 300-1100 nm by using UV-VIS spectrophotometer. The optical transmittance, absorption coefficient, and optical bandgap energy of GZO thin films were calculated from the measured data. The crystallinity of GZO thin films is improved and the bandgap energy increases from 3.08 to 3.23eV with the increasing Ar flow ratio from 10 to 100 sccm. The average transmittance of the films is over 88% in the visible range. The lowest resistivity of the GZO is $6.215{\times}10^{-4}{\Omega}{\cdot}cm$ and the hall mobility increases with the increasing Ar flow ratio. We can optimize the characteristics of GZO as a transparent electrode for thin film solar cells by controlling Ar flow ratio during deposition process.

  • PDF

The transparent and conducting tin oxide thin films by the remote plasma chemical vapor deposition (원격플라즈마화학증착에 의한 투명전도성 산화주석 박막)

  • 이흥수;윤천호;박정일;박광자
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • Transparent and conducting tin oxide films were prepared on Pyrex glass substrates by the remote plasma chemical vapor deposition (RPCVD). The main control variables of the RPCVD process included the deposition time, the flow rates of tetramethyltin, oxygen and argon, the radio-frequency power, and the substrate temperature. Dependence of the deposition rate, electric resistivity, optical transmittance and crystal structure on these parameters was systematically examined to prepare high qualities of tin oxide films and to better understand RPCVD process. The effect of those parameters on the properties of tin oxide films in complicatedly related on another. A tin oxide film parameters on the protimized deposition conditions exhibited deposition rate of 102 $\AA$/min, electric resistivity of $9.7\times 10^{-3}\Omega$cm and visible transmittance of ~80%.

  • PDF

Characterization of AI-doped ZnO Films Deposited by DC Magnetron Sputtering (DC 마그네트론 스퍼터링에 의해 증착한 AZO 박막의 특성)

  • Park, Yi-Seop;Lee, Seung-Ho;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.107-112
    • /
    • 2007
  • Aluminum doped zinc oxide (AZO) films were deposited on non-alkali glass substrate by DC magnetron sputtering with 3 types of AZO targets (doped with 1.0 wt%, 2.0 wt%, 3.0 wt% $Al_2O_3$). Electrical, optical properties and microstructure of AZO films have been investigated by Hall effect measurements, UV/VIS/NIR spectrophotometer, and XRD, respectively. Crystallinity of AZO films increased with increasing substrate temperature ($T_s$) and doping ratio of Al. Resistivity and optical transmittance in visible light were $8.8{\times}10^{-4}{\Omega}cm$ and above 85%, respectively, for the AZO film deposited using AZO target (doped with 3.0 wt% $Al_2O_3$) at $T_s$ of $300^{\circ}C$. On the other hand, transmittance of AZO films in near-infrared region decreased with increasing $T_s$ and doping ratio of Al, which could be attributed to the increase of carrier density.

The Effect of EVA Sheet Gel Content Depending on Curing Condition for Photovoltaic Module (PV모듈용 EVA Sheet의 Curing조건에 따른 Gel Content 특성)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Kyung-Eun;Kim, Hyun-Il;Yu, Kwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1155-1156
    • /
    • 2006
  • In this paper, we analyzed the effect of EVA Sheet Gel Content depending on curing condition for photovoltaic module. Gel Content was measured by manufacturing Glass/EVA Sheet/Back Sheet scheme at several curing temperature and curing time. And the surface analysis of EVA Sheet depending on process condition could be observed using SEM(Scanning Electron Microscope). Through this experiment, we could confirm that there are differences on Gel Content of EVA Sheet and surface configuration depending on curing temperature and curing time. To find out the optical characteristic dependency on curing condition, Class/EVA Sheet/Glass scheme was fabricated. The optical transmittance of EVA Sheet at visible wavelength was enhanced 5% when compared to Glass/Glass scheme. And the transmittance of $130^{\circ}C$/4min, $110^{\circ}C$/4min, $160^{\circ}C$/6min process condition was higher at ultraviolet wavelength range. These curing conditions could be regarded as the best process for suppression the discoloration speed of EVA Sheet under UV light.

  • PDF

The Optical Properties of Si3N4/SnZnO/AZO/Ag/Ti/ITO Multi-layer Thin Films with Laminating Times (Si3N4/SnZnO/AZO/Ag/Ti/ITO 다층 박막의 적층 횟수에 따른 광학적 특성)

  • Lee, Sang-Yun;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In this study, $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film were prepared on glass substrate by DC/RF magnetron sputtering method. To prevent interfacial reaction between Ag and ITO layer, Ti buffer layer was inserted. Optical properties and sheet resistance were studied depending on laminating times of each multi-layered film especially in visible ray. The simulation program, EMP (essential macleod program), was adopted and compared with experimental data to expect the experimental result. It was found out that the transmittance of the first stacked $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film was more than 90%. However, with increasing stacking times, the optical properties of $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film get worse. Consequently, Ti layer is good for oxidation barrier, but too many uses of this layer may have an adverse effect to optical properties of TCO film.

Preparation of $SnO_2$ Thin Film Using Reactive DC Magnetron Sputtering (반응성 DC 마그네트론 스퍼터법에 의한 $SnO_2$ 박막재조 및 특성)

  • Jung, H.W.;Lee, C.;Shin, J.H.;Song, K.H.;Shin, S.H.;Park, J.I.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1352-1354
    • /
    • 1997
  • Transparent conductive thin films have found many application in many active and passive electronic and opto-electronic devices as like flat Panel display electrode and window heat mirror, etc. Low resistivity and high transmittance of this films can be obtained by controlling deposition parameters, which are oxygen partial Pressure, substrate temperature and dopant concentration. In this study, We prepared non-stoichiometric and Sb-doped thin films of tin dioxide by reactive DC magnetron sputtering technology. The lowest resistivity of about $3.0{\times}10^{-3}\;{\Omega}cm$ and 80% transmittance in the visible light region have heed obtained at optimal deposition condition.

  • PDF

Electrical and Optical Properties of Al-doped ZnO Thin Films (Al-doped ZnO 투명 전도성 박막(TCO)의 전기적 광학적 특성)

  • Hong, Youn-Jeong;Lee, Kyu-Mann;Kim, In-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 2007
  • ITO(Indium Tin Oxide) is the most attractive TCO(Transparent Conducting Oxide) materials for LCD, PDP, OLEDs and solar cell, because of their high optical transparency and electrical conductivity. However due to the shortage of indium resource, hard processing at low temperature, and decrease of optical property during hydrogen plasma treatment, their applications to the display industries are limited. Thus, recently the Al-doped ZnO(AZO) has been studied to substitute ITO. In this study, we have investigated the effect of different substrate temperature(RT, $150^{\circ}C$, $225^{\circ}C$, $300^{\circ}C$) and working pressure(10 mTorr, 20 mTorr, 30 mTorr, 80 mTorr) on the characteristics of AZO(2 wt.% Al, 98 wt.% ZnO) films deposited by RF-magnetron sputtering. We have obtained AZO thin films deposited at low temperature and all the deposited AZO thin films are grown as colunmar. The average transmittance in the visible wavelength region is over 80% for all the films and transmittance improved with increasing substrate temperature. Electrical properties of the AZO films improved with increasing substrate temperature.

  • PDF

Characterization of Anti-pollution Film according to the Annealing Temperature for PV Module (태양광 모듈용 내오염성 필름의 열처리 온도에 따른 특성 분석)

  • Yoo, Seung-cheol;Choi, WonSeok;Lim, Yoonsik;Kim, Junghyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.1
    • /
    • pp.33-36
    • /
    • 2018
  • The purpose of this study is to improve the efficiency of anti-pollution film for PV module. The anti-pollution coating process was performed on a glass substrate, which is the same material as the glass substrate for the PV module. We coated the anti-pollution film on the glass substrate by spray coating. After coating process, annealing process was performed during 1 hour at $200^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$. And then we analyzed the surface characteristics according to the annealing temperature of the film. Annealing process can also improve the durability of the coated film. And then we analyzed the anti-pollution characteristics, particle size of anti-pollution film, light transmittance. The particle size of anti-pollution film was analyzed with FE-SEM. The light transmittance was analyzed with UV-Visible spectroscopy including integrating sphere.

Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds

  • Cho, Seung-Hyun;Lim, Hyun-Soon;Jeon, Byung-Kuk;Ko, Jung-Min;Lee, Jun-Young;Ki, Whan-Gun
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Photoreactive polymers as a color filter resist containing both photoreactive acrylate and cinnamate double bonds were synthesized usin two step reactions. The chemical structures of the synthesized polymers were confirmed by $^1H$-NMR and FT-IR spectroscopy. The photoreactive polymers were quite soluble in most common organic solvents and produced excellent quality thin films by spin-coating. The photocuring kinetics of the acrylate and cinnamate double bonds were examined by FT-IR and UV- Vis spectroscopy, which confirmed the excellent photoreactivity of both the acrylate and cinnamate double bonds in the polymers. Upon UV irradiation, photocuring was almost completed within approximately 5 min, irrespective of the type of the prepolymers. The polymers also exhibited superior thermal stability, showing little change in transmittance in the visible region even after heating to $250^{\circ}C$ for one hour. Photolithographic micropatterns could be obtained with a resolution of a few microns.