Browse > Article
http://dx.doi.org/10.5695/JKISE.2007.40.3.107

Characterization of AI-doped ZnO Films Deposited by DC Magnetron Sputtering  

Park, Yi-Seop (School of Materials Science and Engineering, Pusan National University)
Lee, Seung-Ho (Korea Institute of Ceramic Engineering and Technology)
Song, Pung-Keun (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of the Korean institute of surface engineering / v.40, no.3, 2007 , pp. 107-112 More about this Journal
Abstract
Aluminum doped zinc oxide (AZO) films were deposited on non-alkali glass substrate by DC magnetron sputtering with 3 types of AZO targets (doped with 1.0 wt%, 2.0 wt%, 3.0 wt% $Al_2O_3$). Electrical, optical properties and microstructure of AZO films have been investigated by Hall effect measurements, UV/VIS/NIR spectrophotometer, and XRD, respectively. Crystallinity of AZO films increased with increasing substrate temperature ($T_s$) and doping ratio of Al. Resistivity and optical transmittance in visible light were $8.8{\times}10^{-4}{\Omega}cm$ and above 85%, respectively, for the AZO film deposited using AZO target (doped with 3.0 wt% $Al_2O_3$) at $T_s$ of $300^{\circ}C$. On the other hand, transmittance of AZO films in near-infrared region decreased with increasing $T_s$ and doping ratio of Al, which could be attributed to the increase of carrier density.
Keywords
Transparent conductive oxide; Ai doped ZnO; Electrical property; Microstructure; DC magnetron sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z.-C. Jin, I. Hamberg, C. G Granqvist, J. Appl. Phys., 64 (1988) 5117   DOI
2 M. Kon, P. K. Song, A. Mitsui, Y. Shigesato, Jpn. J. Appl. Phys., 41 (2002) 6174-6179   DOI
3 C. Agashe, O. Kluthy, J. Hupkes, U. Zastrow, B. Rech, J. Appl. Phys., Vol. 95. No.4
4 D. Horwat, A. Billard, Thin Solid Films, 515 (2007) 5444-5448   DOI   ScienceOn
5 K. C. Park, D. Y. Ma, K. H. Kim, Thin Solid Films, 305 (1997) 201-209   DOI   ScienceOn
6 D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J.-H. Jeong, B. Cheong, Y.-J. Baik, W. M. Kim, Thin Slid Films, 515 (2006) 1364-1369   DOI   ScienceOn
7 Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang, L. S. Wen, J. Appl. Phys., 90(7)
8 Y. M. Chung, C. S. Moon, W. S. Jung, J. G Han, Thin Solid Films, 515 (2006) 567-570   DOI   ScienceOn
9 M. L. Addonizio, A. Antonaia, G Cantele, C. Privato, Thin Solid Films, 349 (1999) 93-99   DOI   ScienceOn
10 P. K. Song, Y. Shigesato, M. Kamei, I. Yasui, Jpn. J. Appl. Phys., 38 (1999) 2921-2927   DOI
11 Luis da Silva Zambom, Patrick Verdonck, Thin Solid Films, 515 (2006) 596-598   DOI   ScienceOn
12 P. Sagar, M. Kumar, R. M. Mehra, Thin Solid Films, 489 (2005) 94-98   DOI   ScienceOn
13 D. N. Lee, J. Mater. Sci., 24 (1989) 4375   DOI
14 Sang-Moo Park, Tomoaki Ikegami, Kenji Ebihara, Thin Solid Films, 513 (2006) 90-94   DOI   ScienceOn
15 S.-M. Park, T. Ikegami, K. Ebihara, Jpn. J. Appl. Phys., 44(11) (2005) 8027-8031   DOI