• Title/Summary/Keyword: Visible transmittance

Search Result 687, Processing Time 0.023 seconds

Characteristics of Silver Metal-mesh Electrodes Coated by Carbon Nanotubes (탄소 나노튜브가 코팅된 은 메탈-메쉬 전극의 특성)

  • Kim, Bu-Jong;Park, Jong-Seol;Hwang, Young-Jin;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.55-59
    • /
    • 2015
  • This study demonstrates hybrid-type transparent electrodes for touch screen panels. The hybrid-type electrodes were fabricated by coating carbon nanotubes (CNTs) on metal meshes. To form the metal-meshes, thin films of silver (Ag) were deposited on glass substrates using the sputtering method and then patterned via photolithography to obtain mesh structures whose line width was $10{\mu}m$ and line-to-line spacing was $300{\mu}m$. CNTs were coated on Ag-meshes by using two different methods, such as spray coating and electrophoretic deposition (EPD). For the samples of a Ag-meshes and CNTs-coated Ag-meshes, their surface morphologies, electrical sheet resistances, and visible-range transmittances and reflectances were characterized and compared. The experimental results indicated that the reflectance of Ag-mesh electrodes was substantially reduced by coating of CNTs. Especially, the hybrid electrodes of Ag-meshes with EPD-coated CNTs showed excellent properties such as sheet resistance lower than $20{\Omega}/{\Box}$, transmittance higher than 90 %, and reflectance lower than 8%.

The Optimization of Indium Zinc Oxide Thin Film Process in Color Filter on Array structure

  • Lee, Je-Hun;Kim, Jin-Suek;Jeong, Chang-Oh;Kim, Shi-Yul;Lim, Soon-Kwon;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1244-1247
    • /
    • 2004
  • For obtaining the best panel quality of color filter on array(COA) architecture in TFF LCD, we investigated the influence of deposition temperature, $O_2$ flow, thickness on the optical transmittance, wet etching and adhesion properties of IZO deposited onto each color photo resist(red, green, blue). Average transmittance of the pixel single layer in the visible range(between 380 and 780nm) was mainly affected by thickness and showed maximum at 1250 ${\AA}$ while the thickness showing peak transparency in each R, G, B wavelength was different. The relation was calculated by using bi-layer transmission and reflectance model, which corresponded to experimental data very well. The adhesion of IZO deposited on each color PR was found to have enhanced value except red PR case, compared to that of IZO which was deposited on $SiN_x$. Wet etching pattern linearity was decreased as the thickness increased. The thickness of IZO was one of vital factors in order to optimize overall pixel process for fabricating COA structure.

  • PDF

Effect of a Sudden Increase in Light Intensity on Normalized Difference Vegetation Index (NDVI) Reflected from Leaves of Tobacco (급격한 광도 변화가 담배 잎에서 반사되는 Normalized Difference Vegetation Index에 미치는 영향)

  • Suh, Kyehong
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.543-547
    • /
    • 2017
  • Normalized Difference Vegetation Index (NDVI) has played an important role in assessing green plant biomass through remote sensing on global scale since the early 1970s. The concept of NDVI is based on the fact that green plants show higher reflection in near-infrared region than in visible region of the electromagnetic spectrum. However, it is well known that the relocation of chloroplasts in plant leaf cells may dramatically change the optical properties of plant leaves. In this study I traced the changes in the reflectance and transmittance properties of Tobacco leaves at the wavelengths of 660 and 800 nm after a sudden increase in light intensity. The results showed that NDVI of leaves gradually decreased from 72.7% to 69.9% when exposed to a sudden increase in light intensity from 30 to $1,200{\mu}mol/m^2{\cdot}s$. This means that the error resulting from the physiological status of the plant should be accounted for a more precise understanding of ground truth corresponding to the data from the remotely acquired images.

Effect of Ga Dopants on Electrical and Optical Characteristics of ZnO Thin Films (Ga 첨가물이 ZnO의 전기적, 광학적 특성에 미치는 영향)

  • Kim, Jun-Sik;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.685-690
    • /
    • 2010
  • ZnO with the wide band gap near 3.37 eV is typically an n-type semiconductor in which deviation from stoichiometry is electrically active. It was known that the films with a resistivity of the order of $10^{-4}{\Omega}cm$ is not easy to obtain. In order to improve electrical characteristic of ZnO, we added 1, 3, 5 wt% Ga element in ZnO. The Ga-doped ZnO (GZO) was grown on a glass substrate by radio frequency (RF) magnetron sputtering at the temperature range from 100 to $500^{\circ}C$. X-ray diffraction (XRD) patterns of GZO films showed preferable crystal orientation of (002) plane. The lowest resistivity of the GZO films was $8.9{\times}10^{-4}{\Omega}cm$. GZO films significantly influenced by the working temperature. The average transmittance of the films was over 80% in the visible ranges.

Effects of Substrate Temperature on Properties of (Ga,Ge)-Codoped ZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼트링에 의한 Ga 와 Ge가 도핑된 ZnO 박막 특성의 온도효과)

  • Jung, Il-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.584-588
    • /
    • 2011
  • The ZnO thin films doped with Ga and Ge (GZO:Ge) were prepared on glass substrate using RF sputtering system. Structural, morphological and optical properties of the films deposited in different temperatures were studied. Proportion of the element of using target was 97 wt% ZnO, 2.5 wt% Ga and 0.5 wt% Ge with 99.99% highly purity. Structural properties of the samples deposited in different temperatures with 200 w RF power were investigated by field emission scanning electron microscopy, FE-SEM images and x-ray diffraction XRD analysis. Atomic force microscopy, AFM images were able to show the grain scales and surface roughness of each film rather clearly than SEM images. it was showed that increasing temperature have better surface smoothness by FE-SEM and AFM images. Transmittance study using UV-Vis spectrometer showed that all the samples have highly transparent in visible region (300~800 nm). In addition, it can be able to calculate bandgap energy from absorbance data obtained with transmittance. The hall resistivity, mobility, and optical band gap energy are influenced by the temperature.

Influence of Post-depsotion Vacuum Annealing on the Properties of SnO2 Thin Films (증착 후 진공열처리에 따른 SnO2 박막의 특성 변화)

  • Song, Young-Hwan;Moon, Hyun-Joo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.163-167
    • /
    • 2016
  • $SnO_2$ thin films were prepared by radio frequency magnetron sputtering on glass substrates and then vacuum annealed for 30 minutes at 100, 200, and $300^{\circ}C$, respectively. The thickness of films kept at 100 nm by controlling the deposition rate. While the optical transmittance and electrical resistivity of as deposited $SnO_2$ films were 82.6% in the visible wavelength region and $1.9{\times}10^{-3}{\Omega}cm$, respectively, the films annealed at $200^{\circ}C$ show the increased optical transmittance of 84.5% and the electrical resistivity also decreased as low as $8.5{\times}10^{-4}{\Omega}cm$. From the observed results, it is concluded that post-deposition vacuum annealing at $200^{\circ}C$ is an attractive condition to optimize the opto-elecrtical properties of $SnO_2$ thin films for the opto-electrical applications.

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process

  • Yi, Sung-Hak;Kim, Jin-Yeol;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.351-355
    • /
    • 2010
  • Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.

The Applications of Sol-Gel Derived Tin Oxide Thin Films

  • Park, Sung-Soon;John D. Mackenzie
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • Transparent conducting $SnO_2$-based thin films have been coated on float substrates such as fused quartz, and ceramic fiber cloths such as the Nexel and E-glass cloth from tin alkoxides by the sol-gel technique. Also, thin films of alternating layers of $SnO_2$ and $SiO_2$ have been fabricated by dip coating. The sheet resistance and average visible transmittance of the films were investigated in the aspect of the applications as transparent electrodes such as liquid crystal displays, photo-detectors and solar cells. The Nextel and E-glass cloths coated with antimony-doped tin oxide (ATO) had sheet resistance of as low as $20 \;ohm/{\Box}$ and $120ohm/\;{\Box}$, respectively. The promotion effects of additives as $La_2O_3$ and Pt on the ethanol gas sensing properties of the films were investigated in the aspects of the applications as an alcohol sensor and a breath alcohol checker. Possible evidence of quantum well effects in the oxide multilayers of $SnO_2$ and $SiO_2$ was investigated.

  • PDF

Microstructure of ZnO:Ga Thin Films by RF magnetron sputtering (RF 스퍼터링법에 의한 ZnO:Ga 박막의 미세구조)

  • Kim, Byung-Sub;Lee, Sung-Wook;Lim, Dong-Gun;Park, Min-Woo;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.477-480
    • /
    • 2004
  • Ga doped zinc oxide films (ZnO:Ga) were deposited on glass substrate by RF magnetron sputtering from a ZnO target mixed with $Ga_O_3$. The effects of RF discharge power on the electrical, optical and structural properties were investigated experimentally. The structural and electrical properties of the film are highly affected by the variation of RF discharge power. The lowest electrical resistivity of $4.9{\times}10^{-4}\;\Omega-cm$ were obtained with the film deposited from 3 wt% of $Ga_2O_3$ doped target and at 200 W in RF discharge power. The transmittance of the 900 nm thin film was 91.7% in the visible waves. The effect of annealing on the as-deposited film was also studied to improve the electrical resistivity of the ZnO:Ga film.

  • PDF

Comparison of electrical and optical properties between ITO and ZnO:Al films used as transparent conducting films for PDP (PDP용 투명전도막으로 사용되는 ITO 와 ZnO:Al 의 전기적.광학적 특성 비교)

  • Kim, Byung-Sub;Park, Kang-Il;Lim, Dong-Gun;Park, Gi-Yub;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.857-860
    • /
    • 2003
  • Tin doped indium oxide(ITO) and Al doped zinc oxide(ZnO:Al) films, which are widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The electrical and optical properties of both the ITO and ZnO:Al thin films were investigated as functions of substrate temperature, working gas pressure and deposition time. ITO and ZnO:Al films with the the present experimental conditions of temperature and pressure showed resistivity of $2.36{\times}10^{-4}{\Omega}-cm,\;9.42{\times}10^{-4}{\Omega}-cm$ and transmittance of 86.28%, 90.88% in the wavelength range of the visible spectrum, respectively.

  • PDF