Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.7.584

Effects of Substrate Temperature on Properties of (Ga,Ge)-Codoped ZnO Thin Films Prepared by RF Magnetron Sputtering  

Jung, Il-Hyun (Department of Chemical Engineering, Dankook University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.7, 2011 , pp. 584-588 More about this Journal
Abstract
The ZnO thin films doped with Ga and Ge (GZO:Ge) were prepared on glass substrate using RF sputtering system. Structural, morphological and optical properties of the films deposited in different temperatures were studied. Proportion of the element of using target was 97 wt% ZnO, 2.5 wt% Ga and 0.5 wt% Ge with 99.99% highly purity. Structural properties of the samples deposited in different temperatures with 200 w RF power were investigated by field emission scanning electron microscopy, FE-SEM images and x-ray diffraction XRD analysis. Atomic force microscopy, AFM images were able to show the grain scales and surface roughness of each film rather clearly than SEM images. it was showed that increasing temperature have better surface smoothness by FE-SEM and AFM images. Transmittance study using UV-Vis spectrometer showed that all the samples have highly transparent in visible region (300~800 nm). In addition, it can be able to calculate bandgap energy from absorbance data obtained with transmittance. The hall resistivity, mobility, and optical band gap energy are influenced by the temperature.
Keywords
Ga doped ZnO; Ga; Ge doped ZnO; RF sputtering; Optical bandgap energy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. E. Marotti, P. Giorgi, G. Mauchado, and E. A. Dalchiele, Sol. En. Mat. Sol. Cells, 90, 2356 (2006).   DOI
2 H. Phe, F. Zhuge, Z. Z. Ye, L. P. Zhu, F. Z. Wang, B. H. Zhao, and J. Y. Huang, J. Appl. Phys., 99, 023503 (2006).   DOI
3 S. S. Lin and J. L. Huang, Surf. Coat. Technol., 185, 222 (2004).   DOI   ScienceOn
4 O. Kluth, G. Schope, J. Hupkes, C. Agashe, J. Muller, and B. Rech, Thin Solid Films, 442, 80 (2003).   DOI
5 Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, and Z. Zhu, and T. Yao, J. Appl. Phys., 84, 3912 (1988).
6 Y. R. Cho and I. H. Jung. J. Korean Ind. Eng. Chem., 20, 617 (2009).
7 I. H. Jung, M. S. Chae, and U. A. Lee, Journal of the Semiconductor & Display Thechnology, 9, 2 (2010).
8 I. H. Jung and M. S. Chae, Journal of the Semiconductor & Display Thechnology, 9, 3 (2010).
9 W. J. Cho, S. J. Kang, and Y. S. Yoon, Journal of Semiconductor Technology and Science, 47, 6 (2010).
10 S. W. Shin, K. U Sim, J. H. Moon, and J. H. Kim, Current Applied Physics, 10, 274 (2010).   DOI
11 M. Suchea, S. Christoulakis, T Kitsopoulous, and G Kiriakidis, Thin Solid Filims, 515, 6562 (2007).   DOI
12 S. W. Shin, K. U Sim, J. H. Moon, and J. H. Kim, Current Applied Physics, 10, 274 (2010).   DOI
13 M. Jiang, Z. Wang, and Z. Ning, Thin Solid Films, 517, 6717 (2009).   DOI
14 I. H. Jung, M. S. Chae, and U. A. Lee, Journal of the Semiconductor & Display Thechnology, 9 (2010).