• Title/Summary/Keyword: Visible transmittance

Search Result 686, Processing Time 0.025 seconds

Optical and Electrical Properties of Oxide Multilayers

  • Han, Sangmin;Yu, Jiao Long;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.235-237
    • /
    • 2016
  • Oxide/metal/oxide (OMO) thin films were fabricated using amorphous indium-gallium-zinc-oxide (a-IGZO) and an Ag metal layer on a glass substrate at room temperature. The optical and electrical properties of the a-IGZO/Ag/a-IGZO samples changed systemically depending on the thickness of the Ag layer. The transmittance in the visible range tends to decrease as the Ag thickness increases while the resistivity, carrier concentration, and Hall mobility tend to improve. The a-IGZO/Ag (13 nm)/a-IGZO thin film with the optimum Ag thickness showed an average transmittance (Tav) of 71.7%, resistivity of 6.63 × 10−5 Ω·cm and Hall mobility of 15.22 cm2V−1s−1.

Substrate Temperature Effects on Structural and Optical Properties of RF Sputtered CdS Thin Films

  • Hwang, Dong-Hyeon;Choe, Jeong-Gyu;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.218.2-218.2
    • /
    • 2013
  • In this study, CdS thin films were deposited onto glass substrates by radio frequency magnetron sputtering. The films were grown at various substrate temperatures in the range of 100 to $250^{\circ}C$. The effects of substrate temperatures on the structural and optical properties were examined. The XRD analysis revealed that CdS films were polycrystalline and retained the mixed structure of hexagonal wurtzite and cubic phase. The percentages of hexagonal structured crystallites in the films were seen to be increased by increasing substrate temperatures. The film grown at $250^{\circ}C$ showed a relatively high transmittance of 80% in the visible region, with an energy band gap of 2.45 eV. The transmittance date analysis indicated that the optical band gap was closely related to the substrate temperatures.

  • PDF

Change of Physical Properties of Hydrogel Lens Polymer Containing Isocyanate Group with Ag Nanoparticle

  • Cho, Seon-Ahr;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.5-10
    • /
    • 2014
  • A study that copolymerized Ag nanoparticle and furfuryl isocyanate with the crosslinking agent EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), MA (methacrylic acid) and the initiating agent AIBN (azobisisobutyronitrile) is presented. Measurement of the physical characteristics of the produced macromolecule showed that the water content is 32.08~32.67%, refractive index 1.446~1.448, visible light transparency 83.2~67.6%, contact angle $68.2{\sim}83.5^{\circ}$ and tensile strength 0.541~0.755 kgf. It is also demonstrated that the addition of Ag nanoparticles is associated with the reduction of UV-B transmittance and increase in tensile strength. The results show that the produced copolymer can be used as a material for ophthalmic lenses with durability and UV-blocking properties.

투입 전류에 따른 Al이 첨가된 ZnO 박막의 전기적, 광학적 특성

  • Jo Beom-Jin;Geum Min-Jong;Son In-Hwan;Jang Gyeong-Uk;Lee Won-Jae;Kim Gyeong-Hwan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.97-101
    • /
    • 2005
  • The ZnO:Al thin films were prepared on glass by Facing Target Sputtering (FTS) system. We investigated electrical, optical, and structural properties of AZO thin film with sputter ins current 0.1[A]-0.6[A]. We obtained the lowest resistivity $2.3{\times}\;10^{-4}[{\Omega}-cm]$ at sputtering current 0.6[A] from the 4-point probe and the strong (002) peak at sputtering current 0.3[A] from the X-ray Diffractometer (XRD). The optical transmittance of AZO thin films show a very high transmittance of $80\~95\%$ in the visible range and exhibit the absorpt ion edge of about 350 nm.

  • PDF

The Properties of the Nitrocellulose/MWCNT Composites Fabricated on the 10 ${\mu}m$ Polyimide Film for the Flexible Transparent Conduction Film (10 ${\mu}m$ 폴리이미드 기판에 성막된 플렉시블 투명 전도막용 Nitrocellulose/MWCNT 복합체의 제작 및 특성)

  • Jang, Kyung-Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • The composite films were fabricated by air-spray method under the 2 kgf/$cm^2$ pressure using the multi-walled CNTs solution and the nitrocellulose on a 10 ${\mu}m$ polyimide film substrates. We obtained the composite films which were sprayed with the MWCNT dispersion by varying the spray time from 20, 40 and 60sec. The electrical and the optical properties of the sandwiched-structure-composite thin films were investigated by an UV/VIS spectrometer and a Hall Effect equipment. As a result, the optical transmittance of all thin films in the visible range, as well as the electrical conductance shows an available value for the transparent electrode. The carrier concentration and the light transmittance rate for the fabricated sample are between $3.733{\times}10^{10}$ and $6.551{\times}10^{14}cm^{-3}$, around 35 to 95%, respectively.

Influence of Ag thickness on properties of AZO/Ag/AZO Multi-layer Thin Films (AZO/Ag/AZO 다층박막의 Ag두께에 따른 특성 연구)

  • Yeon, Je ho;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2017
  • AZO/Ag/AZO multi-layer films deposited on glass substrate by RF magnetron sputtering and thermal evaporator have a much better electrical properties than Al-doped ZnO thin films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. The optimum thickness of Ag layers was determined to be $90{\AA}$ for high optical transmittance and good electrical conductivity. The Ag layers thickness $90{\AA}$ is an optical transmittance greater than 80% of visible light and the obtained multilayer thin film with the low resistivity of $8.05{\times}10-3{\Omega}cm$ and the low sheet resistance $5.331{\Omega}/sq$. Applying to TCO and Solar electrode will improve efficiency.

  • PDF

Optical Properties of Ga2O3 Single Crystal by Floating Zone Method (부유대역법을 이용한 단결정Ga2O3의 광학적 특성)

  • Gim, JinGi;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.78-82
    • /
    • 2021
  • The Ga2O3 single crystal was grown through a floating zone method, and its structural and optical properties were instigated. It has a monoclinic crystal structure with a (100) crystal orientation and an optical band gap energy of 4.6 eV. It showed an average transmittance of 70% in the visible region. At room temperature, its photoluminescent spectrum showed three different peaks: the ultraviolet at 360 nm, the blue-green at 500 nm, and the red peaks at 700 nm. Especially, at liquid nitrogen temperature, the ultraviolet peak was optically active while the others were quenched.

Effect of Rapid Thermal Annealing on the Properties of Transparent Conducting ZnO/Ti/ZnO Thin Films (투명전극용 ZnO/Ti/ZnO 박막의 급속열처리 효과)

  • Jin-Kyu, Jang;Daeil, Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.314-318
    • /
    • 2022
  • Transparent conducting ZnO/Ti/ZnO tri-layer films deposited on glass substrate with DC and RF magnetron sputtering were rapid thermal annealed at 150, 300 and 450℃ for 5 minutes and then effect of annealing temperature on the structural and optoelectronics properties of the films were investigated. The structural properties are strongly related to annealing temperature and the largest grain size is observed in the films annealed at 450℃. The electrical resistivity also decreases as low as 7.7 × 10-4 Ωcm. The visible transmittance also depends on the annealing temperature. The films annealed at 450℃ show a higher transmittance of 80.6% in this study.

Effect of Rapid Thermal Annealing on the Transparent Conduction and Heater Property of ZnO/Cu/ZnO Thin Films (RTA 후속 열처리에 따른 ZnO/Cu/ZnO 박막의 투명전극 및 발열체 특성 연구)

  • Yeon-Hak Lee;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin film deposited on the glass substrate with DC and RF magnetron sputtering was rapid thermal annealed (RTA) and then effect of thermal temperature on the opto-electical and transparent heater properties of the films were considered. The visible transmittance and electrical resistivity are depends on the annealing temperature. The electrical resistivity decreased from 1.68 × 10-3 Ωcm to 1.18 × 10-3 Ωcm and the films annealed at 400℃ show a higher transmittance of 78.5%. In a heat radiation test, when a bias voltage of 20 V is applied to the ZCZ film annealed at 400℃, its steady state temperature is about 70.7℃. In a repetition test, the steady state temperature is reached within 15s for all of the bias voltages.

Schottky diode characteristics of a sol-gel driven ZnO (졸-겔 방법으로 제조한 ZnO 쇼트키 다이오드의 특성 연구)

  • Han, Kwang-Joon;Kang, Kwang-Sun;Kim, Jae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1733-1736
    • /
    • 2008
  • ZnO thin films with preferred orientation along the (0 0 2) plane were fabricated by a sol-gel method. The effects of the annealing temperature, time, and thickness were studied by investigating UV-visible spectra, FT-IR spectra, and XRD of ZnO films. The films were dried and annealed ed at $100^{\circ}C,\;200^{\circ}C$, and $300^{\circ}C$ for 1hr, 2hrs, and 3hrs, respectively. The film showed the preferred (0 0 2) orientation and high transmittance near 90% in the visible range. Also, SEM images of the films exhibited very smooth surfaces without holes and cracks. Schottky diodes were fabricated by using ZnO sol-gel material. Au and Al were used as electrodes to make Ohmic and Schottky contacts, respectively. The annealing temperature, time and the thickness dependent I-V characteristics were presented in this article.

  • PDF