• Title/Summary/Keyword: Visible emission

Search Result 344, Processing Time 0.029 seconds

Study on visible emission of Cu-ion-doped perovskite hafnate in view of excitation energy dependence

  • Lee, D.J.;Lee, Y.S.;Noh, H.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.8-11
    • /
    • 2015
  • We studied on the visible emission of Cu-ion-doped perovskite hafnate $SrHfO_3$ (SHO:Cu) with the photo-excitation energy dependence. The polycrystalline SHO:Cu samples were newly synthesized in the solid state reaction method. From the X-ray diffraction measurement it was found that the crystalline structure of SHO:Cu is nearly identical to that of undoped $SrHfO_3$. Interestingly, the photoluminescence excitation (PLE) spectra change significantly with the emission energy, which is linked to the strong dependence of the visible emission on the photo-excitation energy. This unusual emission behavior is likely to be associated with the mixed valence states of the doped Cu ions, which were revealed by X-ray photoelectron spectroscopy. We compared our finding of tunable visible emission in the SHO:Cu compounds with the cases of similar materials, $SrTiO_3$ and $SrZrO_3$ with Cu-ion-doping.

UV and visible emission intensity control of ZnO thin films for light emitting device applications (발광소자 응용을 위한 ZnO 박막의 자외선 및 가시광 발광 세기 제어)

  • Kang, Hong-Seong;Shim, Eun-Sub;Kang, Jeong-Seok;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.108-111
    • /
    • 2001
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition(PLD) technique for light emitting device applications. We have controlled the emission intensity of UV and visible light, depending on film thickness and various post-annealing time. UV emission became strong as the thickness of ZnO thin films increased. The intensity of visible light was strong as post-annealing temperature increased. The optical properties of the ZnO thin films were characterized by PL(photoluminescence) and the structural properties of the ZnO were characterized by XRD for the application of ZnO light emission device.

  • PDF

UV and visible emission intensity control of ZnO thin films for light emitting device applications (발광소자 응용을 위한 ZnO 박막의 자외선 및 가시광 발광 세기 제어)

  • 강홍성;심은섭;강정석;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.108-111
    • /
    • 2001
  • ZnO thin films on (001) sapphire substrates knave been deposited by pulsed laser deposition(PLD) technique for light emitting device applications. We have controlled the emission intensity of UV and visible light, depending on film thickness and various post-annealing time. UV emission became strong as the thickness of ZnO thin films increased. The intensity of visible light was strong as post-annealing temperature increased. The optical properties of the ZnO thin films were characterized by PL(photoluminescence) and the structural properties of the ZnO were characterized by XRD for the application of ZnO light emission device.

  • PDF

Effects of Neon Plasma Emission on Optical Properties of Phosphor Layers in Surface-Type Alternate Current Plasma Display Panel

  • Jang, Sang-Hun;Cho, Ki-Duck;Tae, Heung-Sik;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.171-174
    • /
    • 2000
  • This study uses neon and xenon gas mixture discharges to determine the effects of the neon plasma emission on the characteristics of visible emission from the stimulation of the red, green, blue(RGB) phosphor layers in a surface-type alternate current plasma display panel(AC PDP). With a mixture of less than 2% xenon to neon, it is found that the luminance changes in the visible emission of the phosphor layers are similar to those of the neon plasma emission. In the range of xenon mix ratio from 2 to 5%, the luminance of the red, green, blue(RGB) phosphor layers decreases with a decrease in the neon plasma emission intensity. However, with a mixture of above 5% xenon to neon, the luminance of the red, green, blue(RGB) phosphor layers increases regardless of a decrease in the neon plasma emission intensity. Furthermore, the color purity of the red, green, blue(RGB) phosphor layers improve as the neon plasma emission intensity decreases. Accordingly, it is concluded that the optical properties of the phosphor layers, including color purity and luminance, depend on the neon plasma discharge emission as well as the visible emission from the stimulation of the phosphor layers.

  • PDF

Visible Emission Properties of V2O5 Nanorods Prepared by Different Growth Methods

  • Kang, Manil;Kim, Sok Won;Ryu, Ji-Wook
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.289-295
    • /
    • 2014
  • ${\alpha}-V_2O_5$ nanorods were grown by means of electron beam irradiation and thermal oxidation methods and the visible emission properties of the nanorods grown by both methods were investigated. The growth and crystallinity of the nanorods were greatly enhanced by the insertion of a buffer layer. The emission spectra of the nanorods grown by thermal oxidation and electron beam irradiation showed a peak centered at 710~720 nm, which is believed to be due to oxygen vacancies introduced during the growth process. Also, the emission peak centered at 530 nm observed in the $V_2O_5$ nanorods grown by electron beam irradiation was considered to be due to the band edge transition as a result of the enhanced crystallinity.

Visible light emission from $C_60$ and Si nanoparticle film by laser process (C60 및 Si 초미립자 박막의 Laser 반응에 의한 가시광선발광)

  • ;Hideomi Koinuma
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.598-601
    • /
    • 2000
  • We investigated the fabrication of Si nanoparticle and $C_{60}$ thin films by pulsed laser ablation. As a result, we observed visible green photoluminescence spectra in the Si/C$_{60}$ multilayer films after laser annealing. It is considered that this green photoluminescence is occurred from SiC particles, which is produced reaction of Si nanoparticles with $C_{60}$ via laser annealing.ing.

  • PDF

Effect of the Gamma-Ray Irradiation on the Electric and Optical Properties of SrTiO3 Single Crystals

  • Lee, Y.S.;Lim, Junhwi;Kim, E.Y.;Bu, Sang Don
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1566-1570
    • /
    • 2018
  • We investigated the visible emission property of $SrTiO_3$ (STO) single crystals irradiated with gammy-ray (${\gamma}$-ray) at various total doses up to 900 kGy. The electric and optical absorption properties of the irradiated STO samples were hardly changed with the ${\gamma}$-ray irradiation, compared with those of un-irradiated STO. In contrast, the visible emission near 550 nm increased with the ${\gamma}$-ray dose increasing. While the development of the visible emission was indicative of the increase of oxygen vacancies inside STO by the ${\gamma}$-ray irradiation, the newly generated oxygen vacancies were not significantly harmful to the electric and optical properties of STO. We concluded that the STO single crystal should have a good tolerance against the damage by the ${\gamma}$-ray irradiation.

Optical Properties of Silicon Oxide (SiOx, x<2) Thin Films Deposited by PECVD Technique (PECVD 방법으로 증착한 SiOx(x<2) 박막의 광학적 특성 규명)

  • Kim, Youngill;Park, Byoung Youl;Kim, Eunkyeom;Han, Munsup;Sok, Junghyun;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.732-738
    • /
    • 2011
  • Silicon oxide thin films were deposited by using a plasma-enhanced chemical-vapor deposition technique to investigate the light emission properties. The photoluminescence characteristics were divided into two categories along the relative ratio of the flow rates of $SiH_4$ and $N_2O$ source gases, which show light emission in the broad/visible range and a light emission peak at 380 nm. We attribute the broad/visible light emission and the light emission peak to the quantum confinement effect of nanocrystalline silicon and the Si=O defects, respectively. Changes in the photoluminescence spectra were observed after the post-annealing processes. The photoluminescence spectra of the broad light emission in the visible range shifted to the long wavelength and were saturated above an annealing temperature of $900^{\circ}C$ or after 1 hour annealing at $970^{\circ}C$. However, the position of the light emission peak at 380 nm did not change at all after the post-annealing processes. The light emission intensities at 380 nm initially increased, and decreased at annealing temperatures above $700^{\circ}C$ or after 1 hour annealing at $700^{\circ}C$. The photoluminescence behaviors after the annealing processes can be explained bythe size change of the nanocrystalline silicon and the density change of Si=O defect in the films, respectively. These results support the possibility of using a silicon-based light source for Si-optoelectronic integrated circuits and/or display devices.

2D Slab Silicon Photonic Crystal for Enhancement of Light Emission in Visible Wavelengths

  • Cui, Yonghao;Lee, Jeong-Bong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.887-890
    • /
    • 2008
  • We present 2D slab silicon-based photonic crystal optical insulator to enhance light emission efficiency of light-emitting diode (LED). A 2D slab silicon photonic crystal is designed in such a way that light emitting diode die can be placed in the middle of the silicon photonic crystal. The device creates light propagation forbidden region in horizontal plane for Transverse Electric (TE) light with the wavelength range of 450 nm to 600 nm.

  • PDF

Visible Emission Sepctra of o-Xylyl Radical

  • Choe, Ik Sun;Lee, Sang Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.281-284
    • /
    • 1995
  • The visible emission spectra of the o-xylyl radical in the gas phase have been obtained using a Fourier transform spectrometer coupled with a technique of supersonic expansion. The o-xylyl radical was generated in a jet by expansion with an inert buffer gas He from a high voltage dc discharge of the precursor o-xylene. The spectra were analyzed on the basis of the rotational contours of the vibronic bands as well as the known vibrational frequencies by a matrix isolation method.