DOI QR코드

DOI QR Code

Effect of the Gamma-Ray Irradiation on the Electric and Optical Properties of SrTiO3 Single Crystals

  • Lee, Y.S. (Department of Physics, Soongsil University) ;
  • Lim, Junhwi (Department of Physics, Soongsil University) ;
  • Kim, E.Y. (Department of Physics and Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Bu, Sang Don (Department of Physics and Research Institute of Physics and Chemistry, Chonbuk National University)
  • Received : 2018.07.25
  • Accepted : 2018.08.08
  • Published : 2018.11.30

Abstract

We investigated the visible emission property of $SrTiO_3$ (STO) single crystals irradiated with gammy-ray (${\gamma}$-ray) at various total doses up to 900 kGy. The electric and optical absorption properties of the irradiated STO samples were hardly changed with the ${\gamma}$-ray irradiation, compared with those of un-irradiated STO. In contrast, the visible emission near 550 nm increased with the ${\gamma}$-ray dose increasing. While the development of the visible emission was indicative of the increase of oxygen vacancies inside STO by the ${\gamma}$-ray irradiation, the newly generated oxygen vacancies were not significantly harmful to the electric and optical properties of STO. We concluded that the STO single crystal should have a good tolerance against the damage by the ${\gamma}$-ray irradiation.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S. V. Kalinin and N. A. Spaldin, Science 341, 858 (2013). https://doi.org/10.1126/science.1243098
  2. P. A. Cox, Transition metal oxides: an introduction to their electronic structure and properties (Oxford university press, 2010), Vol. 27.
  3. I. W. Seo, Y. Lee, S. A. Lee and W. S. Choi, Curr. Appl. Phys. 17, 1148 (2017). https://doi.org/10.1016/j.cap.2017.05.005
  4. J. Schooley, W. Hosler and M. L. Cohen, Phys. Rev. Lett. 12, 474 (1964). https://doi.org/10.1103/PhysRevLett.12.474
  5. D. Lee, H. Lu, Y. Gu, S-Y. Choi, S-D. Li, S. Ryu, T. Paudel, K. Song, E. Mikheev and S. Lee, Science 349, 1314 (2015). https://doi.org/10.1126/science.aaa6442
  6. S. Woo, H. Jeong, S. A. Lee, H. Seo, M. Lacotte, A. David, H. Y. Kim, W. Prellier, Y. Kim and W. S. Choi, Sci. Rep. 5, 8822 (2015). https://doi.org/10.1038/srep08822
  7. W. Xu, J. Yang, W. Bai, K. Tang, Y. Zhang and X. Tang, J. Appl. Phys. 114, 154106 (2013). https://doi.org/10.1063/1.4825257
  8. H. Chen, F. Zhang, W. Zhang, Y. Du and G. Li, Appl. Phys. Lett. 112, 013901 (2018). https://doi.org/10.1063/1.5009321
  9. D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu and Y. Shimakawa, Nat. Mater. 4, 816 (2005). https://doi.org/10.1038/nmat1498
  10. V. M. Longo, L. S. Cavalcante, M. G. Costa, M. L. Moreira, A. T. de Figueiredo, J. Andres, J. A. Varela and E. Longo, Theor. Chem. Acc. 124, 385 (2009). https://doi.org/10.1007/s00214-009-0628-7
  11. W. Meevasana, P. King, R. He, S. Mo, M. Hashimoto, A. Tamai, P. Songsiriritthigul, F. Baumberger and Z. Shen, Nat. Mater. 10, 114 (2011). https://doi.org/10.1038/nmat2943
  12. Y. Zhu, C. Ding, G. Ma and Z. Du, J. Solid State Chem. 139, 124 (1998). https://doi.org/10.1006/jssc.1998.7816
  13. I. Madiba, N. Emond, M. Chaker, F. T. Thema, S. Tadadjeu, U. Muller, P. Zolliker, A. Braun, L. Kotsedi and M. Maaza, Appl. Surf. Sci. 411, 271 (2017). https://doi.org/10.1016/j.apsusc.2017.03.131
  14. S. J. Brewer, C. D. Cress, S. C. Williams, H. Zhou, M. Rivas, R. Q. Rudy, R. G. Polcawich, E. R. Glaser, J. L. Jones and N. Bassiri-Gharb, Sci. Rep. 7, 5308 (2017). https://doi.org/10.1038/s41598-017-05071-z
  15. J. Lim, Y. Lee, S. A. Yang, G. P. Choi and S. D. Bu, J. Lumin. 188, 188 (2017). https://doi.org/10.1016/j.jlumin.2017.04.030
  16. S. Cho, G. Choi, E. Kim, G. Lee, M. Lee and S. Bu, Ceram. Int. 43, 15694 (2017). https://doi.org/10.1016/j.ceramint.2017.08.129
  17. F. Chandoul, A. Boukhachem, F. Hosni, H. Moussa, M. Fayache, M. Amlouk and R. Schneider, Ceram. Int. 44, 12483 (2018). https://doi.org/10.1016/j.ceramint.2018.04.040
  18. N. Lavanya, C. Sekar, A. Anithaa, N. Sudhan, K. Asokan, A. Bonavita, S. Leonardi and G. Neri, Nanotechnology 27, 385502 (2016). https://doi.org/10.1088/0957-4484/27/38/385502
  19. B. Choudhury, K. Rao and R. Choudhury, J. Mater. Sci. 24, 3469 (1989). https://doi.org/10.1007/BF02385726
  20. T. Feng, Phys. Rev. B 25, 627 (1982). https://doi.org/10.1103/PhysRevB.25.627
  21. K. Gesi, J. Phys. Soc. Jpn. 27, 629 (1969). https://doi.org/10.1143/JPSJ.27.629
  22. K. Gesi and Y. Takagi, J. Phys. Soc. Jpn. 19, 632 (1964). https://doi.org/10.1143/JPSJ.19.632
  23. S. Upadeo and S. Moharil, J. Phys.: Condens. Matter 9, 735 (1997). https://doi.org/10.1088/0953-8984/9/3/013
  24. J. Lim, Y-E. Na, Y. Lee and S. D. Bu, Curr. Appl. Phys. 18, 864 (2018). https://doi.org/10.1016/j.cap.2018.04.014
  25. A. Reyhani, A. Gholizadeh and M. Khanlari, Opt. Mater. 75, 236 (2018). https://doi.org/10.1016/j.optmat.2017.10.027
  26. R. Qindeel, Results in physics 7, 807 (2017). https://doi.org/10.1016/j.rinp.2017.02.003
  27. Y. Sakurai, K. Nagasawa, H. Nishikawa and Y. Ohki, J. Appl. Phys. 86, 370 (1999). https://doi.org/10.1063/1.370740
  28. M. B. Lamo, P. Williams, P. Reece, G. R. Lumpkin and L. R. Sheppard, Appl. Radiat. Isot. 89, 25 (2014). https://doi.org/10.1016/j.apradiso.2014.02.001