• 제목/요약/키워드: Viscous dampers

검색결과 126건 처리시간 0.027초

Mechanical Amplification of Relative Movements in Damped Outriggers for Wind and Seismic Response Mitigation

  • Mathias, Neville;Ranaudo, Francesco;Sarkisian, Mark
    • 국제초고층학회논문집
    • /
    • 제5권1호
    • /
    • pp.51-62
    • /
    • 2016
  • The concept of introducing viscous damping devices between outriggers and perimeter columns in tall buildings to provide supplementary damping and improve performance, reduce structural costs, and increase available usable area was developed and implemented by Smith and Willford (2007). It was recognized that the relative vertical movement that would occur between the ends of outriggers and columns, if they were not connected, could be used to generate damping. The movements, and correspondingly damping, can potentially be significantly increased by amplifying them using simple "mechanisms". The mechanisms also make it possible to increase the number of available dampers and thus further increase supplementary damping. The feasibility of mechanisms to amplify supplementary damping and enhance structural performance of tall, slender buildings is studied with particular focus on its efficacy in improving structural performance in wind loads.

Seismic retrofit of a framed structure using damped cable systems

  • Naeem, Asad;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.287-299
    • /
    • 2018
  • The purpose of this study is to investigate the effectiveness of damped cable systems (DCS) to mitigate the earthquake-induced responses of a building frame structure. The seismic performance of the DCS is investigated using the fragility analysis and life cycle cost evaluation of an existing building retrofitted with the DCS, and the results are compared with the structure retrofitted with conventional fluid viscous dampers. The comparison of the analysis results reveals that, due to the self-centering capability of the DCS, residual displacement approximately reaches to zero for the structure retrofitted with the DCS. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with the conventional fluid viscous damper (VD), especially under the severe ground motions. It is also observed that both the initial and the life cycle costs of the DCS seismic retrofitting technique is lesser compare to the structure retrofitted with the VD.

능력스펙트럼법을 이용한 다증 철골조 건물의 적정 감쇠기 선정 (Evaluation of Proper Supplemental Damping for a Multi-Story Steel Frame Using Capacity Spectrum Method)

  • 김진구;최현훈
    • 한국지진공학회논문집
    • /
    • 제5권2호
    • /
    • pp.103-111
    • /
    • 2001
  • 본 연구에서는 능력스펙트럼법을 이용하여 성능목표를 만족하기 위하여 필요한 점성 감쇠기? 양을 간단하고 직접적인 방법으로 산정하는 방법에 관하여 연구하였다. 먼저 능력스펙트럼법을 이용하여 구조물의 비탄성 응답을 구하고 구조물의응답과 목표변위의 차이를 이용하여 필요한 유효감쇠비를 구하였다. 그리고 이러한 유효감쇠비를 이용하여 필요한 점성감쇠기의 양을 선정하였다. 본 연구에서 제안한 방법의 타당성을 검증하기 위해 10층의 철골조 건물에 세 가지 유형의 층지진하중을 가하고 제안된 절차에 따라 필요한 감쇠기의 양을 구하였다. 해석결과에 따르면 제안된 방법에 의하여 설계된 점성 감쇠기를 해석 모델에 설치하고 시간이력 해석을 수행한 결과 최대응답은 목표변위와 잘 일치함을 발견하였다.

  • PDF

Fluid viscous device modelling by fractional derivatives

  • Gusella, V.;Terenzi, G.
    • Structural Engineering and Mechanics
    • /
    • 제5권2호
    • /
    • pp.177-191
    • /
    • 1997
  • In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical properties, two devices were tested the former behaving as a pure damper (PD device), whereas the latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried out under imposed displacement control. Secondarily, in order to describe their cyclical behavior, a model composed by an elastic and a damping element connected in parallel was defined. The elastic force was assumed as a linear function of the displacement whereas the damping one was expressed by a fractional derivative of the displacement. By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping coefficient and elastic stiffness) were identified by experimental results. The estimated values allowed to outline the main parameter properties on which depend both the elastic as well as the damping behavior of the considered devices.

비대칭$\cdot$비탄성구조물의 지진거동 개선을 위한 감쇠기 설계 (Design of Added Dampers for Retrofit of Asymmetric Nonlinear Structures)

  • 김진구;방성혁
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 2002
  • In this study procedure for finding out additional viscous damping required to meet a performance target of an asymmetric nonlinear structure is developed based on the design concept of Pauly. The behavior of an asymmetric nonlinear structure after yielding is investigated. Finally the required amount of equivalent damping is obtained using the direct-displacement-based design method without carrying out time-consuming nonlinear dynamic time history analysis.

  • PDF

점성 유체 감쇠기의 크기 변화에 따른 성능 변화 예측 (Prediction of the Ability of a Viscous Fluid Damper with Respect to Change of the Size of the Damper)

  • 박화용;윤종민;유성환;김창열;이재응
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.53-60
    • /
    • 2012
  • To reduce the vibration in industrial settings, the viscous fluid dampers have been widely used. Since the damper shows a viscoelastic behavior, many methods to predict the behavior have been investigated. But the methods did not consider a change of damper size that is important factor for practical design engineer. In this study, to predict a change of damper ability with respect to a change of damper size, the dynamic experiment were conducted with fixed aspect ratio and gap. The damping coefficient at zero frequency was computed through theoretical and experiment approach in order to fit the experimental results using fractional derivative Maxwell model.

Effect of near and far-field earthquakes on RC bridge with and without damper

  • Soureshjani, Omid Karimzade;Massumi, Ali
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.533-543
    • /
    • 2019
  • This paper presents a study on the behavior of an RC bridge under near-field and far-field ground motions. For this purpose, a dynamic nonlinear finite element time history analysis has been conducted. The near-field and far-field records are chosen pairwise from the same events which are fits to the seismic design of the bridge. In order to perform an accurate seismic evaluation, the model has been analyzed under two vertical and horizontal components of ground motions. Parameters of relative displacement, residual displacement, and maximum plastic strain have been considered and compared in terms of near-field and far-field ground motions. In the following, in order to decrease the undesirable effects of near-field ground motions, a viscous damper is suggested and its effects have been studied. In this case, the results show that the near-field ground motions increase maximum relative and residual displacement respectively up to three and twice times. Significant seismic improvements were achieved by using viscous dampers on the bridge model. Somehow under the considered near-field ground motion, parameters of residual and relative displacement decrease dramatically even less than the model without damper under the far-field record of the same ground motion.

Vertical isolation of a structure based on different states of seismic performance

  • Milanchian, Reza;Hosseini, Mahmood;Nekooei, Masoud
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.103-118
    • /
    • 2017
  • In vertical seismic isolation (VSI), a building is partitioned intentionally by vertical layers into two dynamically different substructures for seismic response reduction. Initially, a 1-story frame was partitioned into two substructures, interconnected by viscous and visco-elastic links, and seismic responses of the original and the vertically isolated structures (VIS) were obtained, considering a large number of stiffness and mass ratios of substructures with respect to the original structure. Color contour graphs were defined for presentation and investigation of large amounts of output results. Dynamic characteristics of the isolated structures were studied by considering the non-classical damping of the system, and then the effects of viscous and visco-elastic link parameters on the modal damping ratios were discussed. On this basis, three states of mass isolation, interactional state, and control mass were differentiated. Response history analyses were performed by Runge-Kutta numerical method. In these analyses, interaction of isolation ratios and link parameters, on response control of VIS was studied and the appropriate ranges for link parameters as well as the optimal ranges for isolation ratios were suggested. Results show that by using the VSI technique, seismic response reduction up to 50% in flexible substructure and even more in stiff substructure is achievable.

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi;Fatemeh Arkavazi;Hamzeh Shakib
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.343-358
    • /
    • 2023
  • The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.