• Title/Summary/Keyword: Viscosity of Water

Search Result 1,518, Processing Time 0.029 seconds

Physical Modeling of Aluminum-Foam Generation (알루미늄 발포공정의 물리적 모델링)

  • Oak S. M.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.297-300
    • /
    • 2001
  • Physical modeling technique is applied to investigate foam generation in molten aluminum. By using room temperature water with specially designed equipment, the effects of stirrer type, fluid viscosity(glycerine added to water) and stirring velocity on foam generation behaviors are intensively analysed The distribution and size of bubbles varied with each process parameters but the most important parameters are stirring velocity and fluid viscosity. The results obtained from physical simulation have been confirmed by actual aluminum foam generation experiment at various process variables.

  • PDF

Properties of the Concrete Foaming Agent According to Temperature and Concentration (기포제 온도 및 희석농도에 따른 콘크리트용 기포제의 특성)

  • Choi, Ji-Ho;Lee, Min-Jae;Jeong, Ji-Young;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.247-249
    • /
    • 2011
  • Pre-foaming, one of the manufacturing way of foamed concrete, is influenced by foaming agent. When the foaming agent diluted with water, surface tension and viscosity are varied. Therefore, this study is reviewing the surface tension, viscosity and unit weight of foam by experimental factor such as foaming agent types(AES, AOS, VS FP) and foam agent dilution concentration (1, 3, 5%) and temperature of materials (5, 10, 20℃). As an expeimental result, the surface tension and viscosity slightly increased with increasing concentrations. Meanwhile, when increasing temperature, the viscosity has decreased. FP produce relatively stable foams only in case 3% or more, which produce unstable foams containing large amount of water content by decreasing only insignificant surface tension when diluted at concentration of 1%.

  • PDF

Viscosity analysis of lightweight foamed mortar for foam stability (기포 안정성 확보를 위한 경향 기포 모르타르의 점도 분석)

  • Lee, Hyangsun;Son, Baegeun;Jeon, Jongwoon;Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.52-53
    • /
    • 2018
  • In this study, viscosity analysis of the lightweight foamed mortar was conducted to evaluate the foam stability. According to a series of experiment, void volume related with density of the mixture and viscosity of the mixture were infleunced by water-to-binder ratio and addition of viscosity modifying admixture (VMA). Especially, the stability of the foam inside the mortar was confirmed with adding VMA.

  • PDF

CFD PARAMETRIC STUDY FOR 2D WATER ENTRY

  • Lee, H.H.;Rhee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.191-195
    • /
    • 2009
  • A parametric study for for the water entry of a two dimensional symmetric wedge with deadrise angle of 10 degrees was carried out to find out the most dominant parameter. Water entry problem with constant velocity is simplified as the stationary wedge in the way of the upcoming water surface. The calculated impact loads showed that the effect of the viscosity was not so important in this problem. For a given grid system a suitable time step size can be found. The most sensitive parameter was found to be the grid size.

  • PDF

Systematic study on calcium-dissolved organic matter interaction in a forward osmosis membrane-filtration system (정삼투 멤브레인 공정에서 칼슘이온과 용존 유기물 상호작용에 의한 플럭스 변화 연구)

  • Heo, Jiyong;Han, Jonghun;Kim, Yejin;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.737-744
    • /
    • 2016
  • The investigation of effects on fouling propensity with various viscosity of feed solutions would be better understanding for forward osmosis (FO) performance since the fouling propensity was directly influenced with solution viscosity. Therefore, this study was focused on the FO fouling with model foultants (humic acid, alginate) by altering solution viscosity with change of ionic strength (I.S) and $Ca^{2+}$ concentrations. In the comparison between humic acid and alginate, as expected, the alginate generally caused more severe fouling (almost 35.8 % of flux reduction) based on the solution characteristics (high viscosity) and fouling patterns (coil and gel layer). However, interesting point to note is that the fouling propensity of alginate was more severe even though it was applied with low viscosity of feed conditions (I.S = 20 mM, $Ca^{2+}=1mM$). This might be due to that crossed linked gel layer of alginate on the FO membrane surface could be best formed in the condition of $Ca^{2+}$ presence and higher I.S, and that is more dominant to fouling propensity than the low viscosity of feed solutions.

Study on Angular Momentum Transfer in Polymer Solutions (폴리머 용액에서의 각운동량 전달에 관한 연구)

  • Kim, Jae-Won;Ahn, Eun-Young;Oh, Jung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.67-73
    • /
    • 2006
  • This investigation deals with the spin-up flows in a circular container of aspect ratio, 2.0. Shear front is generated in the transient spin-up process and propagating from the side wall to the central axis in a rotating container. Propagation of the shear front to the axis in a rotating container means the region acquires an angular momentum transfer from the solid walls. Propagating speed of the shear front depends on the apparent viscosity of polymer solution. Two kinds of polymer solutions are considered as a working fluid: one is CMC and the other is CTAB solution. CMC solution has larger apparent viscosity than that of water, and CTAB shows varying apparent viscosities depending on the applied shear rates. Transient and spatial variations of the apparent viscosities of the present polymer solutions (CTAB and CMC) cause different speeds of the propagating shear front. In practice, CMC solution that has larger values of apparent viscosity than that of water always shows rapid approach to the steady state in comparison of the behavior of the flows with water. However, for the CTAB solution, the speed of the propagating of the shear front changes with the local magnitude of its apparent viscosity. Consequently, the prediction of Wedemeyer's model quantitatively agrees with the present experimental results.

Effect of Physical Properties of Polymer Solution on the Thickness of Ultrathin Membrane Prepared by Water Casting Method (고분자용액의 물성이 수면전개 박막의 두께에 미치는 영향)

  • Nam, Suk-Tae;Han, Myeong-Jin;Choi, Ho-Sang;Park, Young Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.200-206
    • /
    • 1998
  • The effect of surface tension and viscosity of polymer solution on the thickness of water casting membranes was studied. Spreading of polymer solutions on water surface was governed by the surface tension and viscosity of the polymer solution. The thickness of water casting membrane was affected by these two factors. The properties, mentioned above, were proportional to the polymer concentration. The order of magnitude in surface tension was PVC>PS>CA and that of viscosity was CA>PS>PVC. The difference of surface tension between water and polymer solution acts as driving force for spreading of polymer solution, but the viscosity as resistance. The thickness of polymeric membrane prepared by water casting was PS>CA>PVC. The order of membrane thickness was not as same as that of surface tension. This phenomena were due to the viscosity which acts as more effective spreading resistance than the surface tension.

  • PDF

Conformational Transition of Form II to Form Ⅰ PoLy(L-proline) and the Aggregation of Form Ⅰ in the Transition: Water-Propanol Solvent System

  • 김현돈
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.922-928
    • /
    • 1997
  • The conformational transition of poly(L-proline) (PLP), Form Ⅱ → Form Ⅰ and the intermolecular aggregation of the product, Form Ⅰ, during and after the transition in water-propanol (1:7, 1:9, 1:15.7, and 1:29 v/v) were studied. For the study, the viscosity change and excess light scattering intensity were measured in the course of the transition which was determined by the Form Ⅰ fraction, fI of the sample solution. For the PLP sample of molecular weight Mv=31,000 the experimental results show that the reaction course is roughly divided into three regions: in the first region [fI=0.27 to 0.40 (- [α]D=400 to 330)], the conformational change of Form Ⅱ → Form Ⅰ occurs with decrease of viscosity, in the second region [fI=0.40 to 0.80 (- [α]D=330 to 120)], a partial side-by-side (p-S-S) type aggregation in which Form Ⅰ blocks interact with each other, which induces the increase of viscosity, starts to occur, and in the third region [fI=0.80 to 1.00 (- [α]D=120 to 15)], a side-by-side type (raft like) aggregation of Form Ⅰ or an end-to-end (E-E) type aggregation occurs according to the solvent situation, i.e., in a water-rich medium [water-propanol (1:9 or 1:7 v/v)], the (S-S) type aggregation with a gross decrease in viscosity occurs while in a water-poor medium [water-propanol (1:29 or 1:15.7 v/v), the (E-E) type aggregation with a large increase in viscosity occurs. The (S-S) type aggregation was promoted at high temperatures. Based on the structure of PLP, a reasonable mechanism for the (p-S-S) and (S-S) aggregation which occurs with the transition of Form Ⅱ → Form Ⅰ is considered. The suggested mechanism was also supported by the result of chain length effect of PLP for the aggregation.

Effects of Sugars and Pectin on the Quality Characteristics of Low Sugar Wild Vine (Vitis coignetiea) Jam (당과 펙틴이 저당 머루잼의 품질특성에 미치는 영향)

  • Kim, Moon-Jung;Yoon, Suk-Hoo;Jung, Mun-Yhung;Choe, Eun-Ok
    • Korean journal of food and cookery science
    • /
    • v.24 no.2
    • /
    • pp.206-211
    • /
    • 2008
  • This study investigated the feasibility of manufacturing a low-sugar wild vine jam by examining viscosity, water content, and pH, as affected by sugar and pectin content. The jams were prepared by adding various amounts of sucrose, glucose, or fructose (1.89 M, 2.34 M, 2.63 M, or 2.92 M) and/ or pectin (0%, 0.3%, 0.5%, 0.8%, or 1%) to wild vine juice and heating at $90^{\circ}C$ for 3 hrs. A higher viscosity was shown for the jam manufactured with sucrose as compared to those made with glucose or fructose, and the greater the sucrose level the higher the viscosity of the jam. The jam with 50% reduced sugar content showed a similar viscosity to the control jam, which contained only 2.92 M sucrose, when the sugar was co-added with pectin at 0.5% for the low sucrose jam, and at 0.8% for the low glucose or low fructose jams, respectively. The water content of the low sucrose jam was lower than that of the low glucose or low fructose jams, and adding pectin had no significant effect on the water content of the low sugar jam. The pH levels of the jams were not significantly different, regardless of the type and concentration of sugar, temperature, or pectin addition, and ranged between 3.6 and 3.8. Overall, the results clearly show that wild vine jam with 50% reduced sugar content and having the same viscosity as control jam, can be manufactured when pectin and sugar are added together.

A Study on the Variation of Physical Properties by the Water to Cement Ratio and the Mixing Speed for Grout Materials (그라우트재의 물시멘트비 및 혼합속도에 의한 물성변화에 관한 연구)

  • 천병식;김진춘;장의웅;송성호;이준우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.445-452
    • /
    • 2001
  • Generally, OPC(ordinary portland cement) is used for grouting in Korea, and bentonite has usually been added to prevent the deposition of cement particles. The dispersion of CB(cement bentonite) grout is influenced by variable factors i.e. water to cement ratio, particle size of cement, kind of bentonite, adding volume, methods of adding, viscosity of CB grout materials and curdling time. Among variable factors, the viscosity of CB grout materials is influenced by the dispersion, and dispersion is improved as increasing the mixing speed. In this paper, described a suitable mixing speed of the High Speed Mixer in field, engineering characteristics of CB grout materials vary with the water to cement ratio and the mixing speed as well as confirming the state of dispersion.

  • PDF