• 제목/요약/키워드: Viscosity Equation

검색결과 393건 처리시간 0.023초

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • 충청수학회지
    • /
    • 제26권3호
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

A Corresponding State Theory for the Viscosity of Liquids

  • Kim, Won-Soo;Lee, Suk-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.33-37
    • /
    • 2008
  • A phenomenological theory of viscosity previously proposed by the present authors8 is applied to the corresponding state theory for the viscosity of liquid. Through the process of the formulation of the corresponding state equation, we can find the simple viscosity equation with no parameters in a reduced form. The liquid viscosities of various substances can be calculated using this equation when we know only the values of the molecular weight and critical constant of substances. A corresponding state equation for the viscosity of liquid from this theory may be applicable to predicting viscosities of various substances under varying temperature and pressure. As a result, this equation may be widely applied to chemical engineering.

Brake 점성이론으로 계산한 이성분기체의 점성 (Viscosity of Binary Gas Mixture from the Calculation by Using the Brake Theory of Viscosity)

  • 김원수
    • 대한화학회지
    • /
    • 제48권3호
    • /
    • pp.243-248
    • /
    • 2004
  • 실제 기체 및 dense gas나 액체영역까지 영역의 점성까지 두루 점성 계산에 성공적이었던 brake 점성이론을 사용하여 이성분기체의 점성을 계산하였다. Adjustable parameter가 없었으나 낮은 압력에서는 물론 고압하에서도 계산된 값은 실험치와 잘 일치하였다. Redlich-Kwong 방정식을 사용하여 점성에 관한 대응상태방정식을 구성할 수 있었으며 이로부터 초임계유체의 다양한 공업적 활용가능성을 기대할 수 있게 되었다.

Analysis of Empirical Constant of Eddy Viscosity by Zero- and One-Equation Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Kim, Tae Yun;Lee, Moon Ock;Hwang, Sung Su
    • 해양환경안전학회지
    • /
    • 제20권3호
    • /
    • pp.323-333
    • /
    • 2014
  • In this paper, the wakes behind a square cylinder were simulated using two kinds of different turbulence models for the eddy viscosity concept such as the zero- and the one-equation model in which the former is the mixing length model and the latter is the k-equation model. For comparison between numerical and analytical solutions, we employed three skill assessments: the correlation coefficient(r) for the similarity of the wake shape, the error of maximum velocity difference(EMVD) for the accuracy of wake velocity and the ratio of drag coefficient(RDC) for the pressure distribution around the structure. On the basis of the numerical results, the feasibility of each model for wake simulation was discussed and a suitable value for the empirical constant was suggested in these turbulence models. The zero-equation model, known as the simplest turbulence model, overestimated the EMVD and its absolute mean error(AME) for r, EMVD and RDC was ranging from 20.3 % to 56.3 % for all test. But the AME by the one-equation model was ranging from 3.4 % to 19.9 %. The predicted values of the one-equation model substantially agreed with the analytical solutions at the empirical mixing length scale $L=0.6b_{1/2}$ with the AME of 3.4 %. Therefore it was concluded that the one-equation model was suitable for the wake simulation behind a square cylinder when the empirical constant for eddy viscosity would be properly chosen.

SOLUTIONS OF QUASILINEAR WAVE EQUATION WITH STRONG AND NONLINEAR VISCOSITY

  • Hwang, Jin-Soo;Nakagiri, Shin-Ichi;Tanabe, Hiroki
    • 대한수학회지
    • /
    • 제48권4호
    • /
    • pp.867-885
    • /
    • 2011
  • We study a class of quasilinear wave equations with strong and nonlinear viscosity. By using the perturbation method for semilinear parabolic equations, we have established the fundamental results on existence, uniqueness and continuous dependence on data of weak solutions.

경유혼입 디젤엔진오일의 점도특성에 관한 실험적 연구 (Experimental Study on the Viscosity Characteristics of Diluted Engine Oils with Diesel Fuel)

  • 김청균;김한구
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2008
  • An experimental study was conducted to evaluate the viscosity characteristics of multi-grade engine oils in which contain diesel fuels. Unused engine oils of SAE 5W40, 10W40 and 15W40 were blended with a diesel fuel ratio of 5%, 10%, and 15%. The viscosity of a diluted engine oil was measured with temperature variation ranging from $-20^{\circ}C$ to $120^{\circ}C$ using a rotary viscometer. The diluted engine oil in which is blended to a diesel fuel plays an important role for decreasing an engine oil viscosity, which may decrease the oil film thickness and a load-carrying capacity. Test results show that the viscosity tends to fall for the increased temperature when engine oil is mixed with a diesel fuel. Especially, the viscosity at a low temperature zone is radically decreased compared with a high temperature zone. Based on the experimental results, the empirical equation that can predict the viscosity of diluted engine oil is expressed in the exponential function with the variation of the temperature and a fuel ratio of diluted engine oil. This equation may be possible to predict the limitation of the oil-fuel dilution rate at the concept design stage of the CDPF system, which doesn't affect the influence of the tribological components.

반도체 봉지제용 EMC의 점도거동 특성 연구 -Mooney식을 이용한 점도예측- (The Characteristics of Viscosity Behavior of EMC for Semi-conductor Encapsulant -The Prediction of Viscosity by Mooney Equation-)

  • 김인범;배두한;이명천;이의수;윤효창;임종찬
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.949-953
    • /
    • 1999
  • 반도체 봉지재에 쓰이는 EMC(Epoxy Molding Compound)는 고농도의 충전제를 함유하고 있는데, 이 충전제의 양과 성질에 따라 유동 특성이 크게 달라진다. 본 연구에서는 충전제의 농도, 입자모양, 크기에 따른 EMC(에폭시/실리카)의 점도변화 특성을 조사하였고, 이를 Mooney 식을 사용하여 예측하여 보았다. Mooney 식에 포함되어 있는 최대 충전율과 형상인자 중 최대 충전율은 Ouchiyama의 충전 모델과 Taguchi의 방법을 이용하여 구하였고, 형상인자는 실험자료를 이용하여 구하였다. 구해진 Mooney 식은 EMC의 점도 거동을 잘 예측하였다.

  • PDF

레오로지 소재의 고상입자 변형거동 해석 (Solid Particle Behavior Analysis in Rheology Material by Fortran 90)

  • 권기영;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.234-237
    • /
    • 2008
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, Rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology Process to be Performed. General Plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape. In addition, the dynamics behavior compare with Okano equation to Power law model which is viscosity equation.

  • PDF

고전단점도 측정에 의한 도공액의 패킹 특성 연구 (Studies on the Packing Characteristics of Coating Colors Based on the Rheological Properties at High Shear Rates)

  • 이학래;성용주
    • 펄프종이기술
    • /
    • 제29권2호
    • /
    • pp.7-15
    • /
    • 1997
  • High shear viscosity at several solids levels was measured for a number of pigment slurries and coating colors containing either anionic or amphoteric latex and analyzed according to Mooney and Eiler equations. Maximum packing fraction and intrinsic viscosity were obtained and compared. Eiler equation provides more credible information than Mooney equation on particle packing and intrinsic viscosity. The packing fraction obtained from Eiler equation was slightly greater than that obtained from static FCC measurement indicating the influence of pigment movement under the dynamic condition. Amphoteric latex caused 4-5% increase of maximum packing fraction of a coating color when its pH is lowered from 7 to 6, while anionic latex did not show any significant change in packing characteristics.

  • PDF