• Title/Summary/Keyword: Viscoelastic finite element analysis

Search Result 135, Processing Time 0.021 seconds

Thermal Deformation Analysis of L-shaped Composite During Cure Process by Viscoelastic Model (점탄성을 고려한 L-형상 복합재료 성형시 열변형 해석)

  • Seong, Dong-Yun;Kim, Wie-Dae
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.220-227
    • /
    • 2020
  • When curing the composite, the fibers have little thermal deformation, but the resin changes its properties with time and temperature, which leads to residual stress in the product. Residual stress is caused by the difference in the coefficient of thermal expansion of the fibers and resin during the curing process and the chemical shrinkage of the resin. This difference causes thermal deformation such as spring-in and warpage. Thermal deformation of composite structure is important issue on quality of product, and it should be considered in manufacturing process. In this study, a subroutine was developed to predict thermal deformation by applying 3-D viscoelastic model. The finite element analysis was verified by comparing the results of the plate analysis of the 2-D viscoelastic model. Spring-in of L-shaped structure was predicted and analyzed by applying the 3-D viscoelastic model.

Viscoelastic Stress Analysis of Adhesive-bonded Cylindrical by FEM (유한요소법을 이용한 원통체의 점탄성 응력 해석)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.259-267
    • /
    • 2019
  • Purpose: In this paper adhesive-bonded cylindrical lap joints are analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. Method: The distribution of the stresses in the adhensive is evaluated using the Finite Element Method. Nuverical examples for identical and different adherends bonded through a four parameter viscoelastic solid adhesive are illustrated. Results: The stress distribution in the adhesive layer with respect to time is shown. The stress distribution in the adhesive layer with respect to time is shown. The results are also shown that adherend thickness and elastic modulus give effect on the normalized stress. Conclusion: In this study, the stress distribution of the adhesive layer of the wrapped cylindrical body considering the viscoelasticity of the adhesive layer was numerically analyzed by using a four - element elastomer model.

OPTIMAL DESIGN OF THE MULTIPLAYER DAMPING MATERIALS USING EQUIVALENT MODELING

  • Hur, D.J.;Lee, D.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • The viscoelastic layer material is widely used to control the noise and vibration characteristics of the panel structure. This paper describes the design technology of the effective vibration damping treatment using the concept of the equivalent parameter of viscoelastic layer materials. Applying the equivalent parameter concepts based on theories of shell, it is possible to simulate the finite element analysis of damping layer panel treatments on the vibration characteristics of the structure. And it is achieved the reduced computational cost and the optimal design of topological distribution for the reduction of vibration effect.

Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties (초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측)

  • Lee, Seungpyo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.

Finite element analysis of viscoelastic flows in a domain with geometric singularities

  • Yoon, Sung-Ho;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.99-110
    • /
    • 2005
  • This work presents results of finite element analysis of isothermal incompressible creeping viscoelastic flows with the tensor-logarithmic formulation of the Leonov model especially for the planar geometry with singular comers in the domain. In the case of 4:1 contraction flow, for all 5 meshes we have obtained solutions over the Deborah number of 100, even though there exists slight decrease of convergence limit as the mesh becomes finer. From this analysis, singular behavior of the comer vortex has been clearly seen and proper interpolation of variables in terms of the logarithmic transformation is demonstrated. Solutions of 4:1:4 contraction/expansion flow are also presented, where there exists 2 singular comers. 5 different types spatial resolutions are also employed, in which convergent solutions are obtained over the Deborah number of 10. Although the convergence limit is rather low in comparison with the result of the contraction flow, the results presented herein seem to be the only numerical outcome available for this flow type. As the flow rate increases, the upstream vortex increases, but the downstream vortex decreases in their size. In addition, peculiar deflection of the streamlines near the exit comer has been found. When the spatial resolution is fine enough and the Deborah number is high, small lip vortex just before the exit comer has been observed. It seems to occur due to abrupt expansion of the elastic liquid through the constriction exit that accompanies sudden relaxation of elastic deformation.

Design and Multi-scale Analysis of Micro Contact Printing (미세접촉인쇄기법의 설계와 다중스케일해석)

  • Kim, Jung-Yup;Kim, Jae-Hyun;Choi, Byung-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1927-1931
    • /
    • 2003
  • Nanometer-sized structures are being applied to many fields including micro/nano electronics, optoelectronics, quantum computing, biosensors, etc. Micro contact printing is one of the most promising methods for manufacturing the nanometer-sized structures. The crucial element for the micro contact printing is the nano-resolution printing technique using polymeric stamps. In this study, a multi-scale analysis scheme for simulating the micro contact printing process is proposed and some useful analysis results are presented. Using the slip-link model [1], the dependency of viscoelasticity on molecular weight of polymer stamp is predicted. Deformation behaviors of polymeric stamps are analyzed using finite element method based upon the predicted viscoelastic properties.

  • PDF

Experimental and Numerical Study on the Viscoelastic Property of Polycarbonate near Glass Transition Temperature for Micro Thermal Imprint Process (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링)

  • Lan, Shuhuai;Lee, Hey-Jin;Lee, Hyoung-Wook;Song, Jung-Han;Lee, Soo-Hun;Ni, Jun;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.70-73
    • /
    • 2009
  • The aim of this research is to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature. An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model from the test data. Further validation of the model and parameters was performed by comparing the analysis of FE model results to the experimental data.

  • PDF

Active Control of Sound Fields from Vibrating Plates Using Piezoelectric and Viscoelastic Material (압전재료와 점탄성 재료를 이용한 평판 진동 음장의 능동제어)

  • Kang, Young-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.950-955
    • /
    • 2002
  • The coupled finite/boundary element method is used in numerical analysis for acoustic radiation from the vibration of rectangular composite plate which is simply supported. This analysis is validated using the Wallace equation for an isotropic plate. Active control of sound fields has been tarried out using 3 pairs of piezoelectric sensor/actuator and a pair of viscoelastic material by Passive constrained layer damping treatment. The results show that the optimal placement of piezoelectric sensor/actuator and VE patch is required to control the sound fields from a vibrating composite plate.

Layer-wise numerical model for laminated glass plates with viscoelastic interlayer

  • Zemanova, Alena;Zeman, Jan;Janda, Tomas;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.369-380
    • /
    • 2018
  • In this paper, a multi-layered finite element model for laminated glass plates is introduced. A layer-wise theory is applied to the analysis of laminated glass due to the combination of stiff and soft layers; the independent layers are connected via Lagrange multipliers. The von $K{\acute{a}}rm{\acute{a}}n$ large deflection plate theory and the constant Poisson ratio for constitutive equations are assumed to capture the possible effects of geometric nonlinearity and the time/temperature-dependent response of the plastic foil. The linear viscoelastic behavior of a polymer foil is included by the generalized Maxwell model. The proposed layer-wise model was implemented into the MATLAB code and verified against detailed three-dimensional models in ADINA solver using different hexahedral finite elements. The effects of temperature, load duration, and creep/relaxation are demonstrated by examples.

An Analysis of Dynamic Characteristics of Bolted Lap Joints with Viscoelastic Layers (점탄성재 삽입시 볼트랩 죠인트의 동특성 해석)

  • 박명균;박세만;최영식;박상규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.172-178
    • /
    • 2003
  • Two types of bolted lap joints, one with a viscoelastic layer and the other without the viscoelastic layer were chosen to analyze the dynamic characteristics of the joints with the mechanical properties of the bolts in the joints are considered as computational variables. The finite element method was used along with the modal testing to verify the PEM model. The results in the bolted lap joints reveal that the higher the Young's modulus for the bolts we use the higher the natural frequencies we obtain fur the joints. However, the natural frequency differences in the first and second mode are not substantial but become noticeable in the higher modes. Lower natural frequencies were obtained for the bolted lap joints with the viscoelastic layer when compared with those of the bolted lap joints without the viscoelastic layer. And the differences in the natural frequencies for the two types of joints are relatively small in the first and second mode whereas in the higher mode the differences become significant. The loss factors were observed to be significant especially in the second mode for the bolted lap joints with the viscoelastic layer.