Browse > Article
http://dx.doi.org/10.7234/composres.2020.33.4.220

Thermal Deformation Analysis of L-shaped Composite During Cure Process by Viscoelastic Model  

Seong, Dong-Yun (Aircraft Structural Design Lab, Department of Aerospace Engineering, Pusan National University)
Kim, Wie-Dae (Department of Aerospace Engineering, Pusan National University)
Publication Information
Composites Research / v.33, no.4, 2020 , pp. 220-227 More about this Journal
Abstract
When curing the composite, the fibers have little thermal deformation, but the resin changes its properties with time and temperature, which leads to residual stress in the product. Residual stress is caused by the difference in the coefficient of thermal expansion of the fibers and resin during the curing process and the chemical shrinkage of the resin. This difference causes thermal deformation such as spring-in and warpage. Thermal deformation of composite structure is important issue on quality of product, and it should be considered in manufacturing process. In this study, a subroutine was developed to predict thermal deformation by applying 3-D viscoelastic model. The finite element analysis was verified by comparing the results of the plate analysis of the 2-D viscoelastic model. Spring-in of L-shaped structure was predicted and analyzed by applying the 3-D viscoelastic model.
Keywords
Composite materials; Viscoelasticity; CHILE(Cure hardening instantaneously linear elastic); Finite element analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 White, S.R., and Kim, Y.K., "Process-Induced Residual Stress Analysis of AS4/3501-6 Composite Material," Mechanics of Composite Materials and Structures, Vol. 5, No. 2, 1998, pp. 153-186.   DOI
2 Kim, Y.K., and White, S.R., "Stress Relaxation behavior of 3501-6 Epoxy Resin During Cure", Polymer Engineering & Science, Vol. 36, No. 23, 1996, pp. 2852-2862.   DOI
3 Kim, Y.K., and White, S.R., "Process-induced Stress Relaxation Analysis of AS4/3501-6 Laminate," Journal of Reinforced Plastics and Composites, Vol. 16, No. 1, 1997, pp. 2-16.   DOI
4 White, S.R., and Hahn, H.T., "Process Modeling of Composite Materials: Residual Stress Development during Cure. Part II. Experimental Validation," Journal of Composite Materials, Vol. 26, No. 16, 1992, pp. 2423-2453.   DOI
5 Jung, S.R., Kim, W.D., and Jim, J.H., "Analysis of Thermal Deformation of Carbon-fiber Reinforced Polymer Matrix Composite Considering Viscoelasticity," Journal of the Korean Society for Composite Materials, Vol. 27, No. 4, 2014, pp. 174-181.
6 Kim, Y.S., and Kim, W.D., "Prediction of Spring-in Deformation of carbon Fiber Reinforced Composite by Thermal Residual Stress", Composites Research, Vol. 30, No. 6, 2017, pp. 410-415.   DOI
7 Choi, E.S., and Kim, W.D., "Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage," Composites Research, Vol. 31, No. 6, 2018, pp. 404-411.
8 Oh, J.M., and Kim, W.D., "Prediction of Spring-in of Curved Laminated Composite Structure," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 43, No. 1, 2015, pp. 1-7.   DOI
9 Sung, S.H., and Kim, W.D., "Prediction of Deformation of Carbon-fiber Reinforced Polymer Matrix Composite for Tool Materials and Surface Conditions," Composites Research, Vol. 27, No. 6, 2014, pp. 231-235.   DOI
10 Zhang, G., Wang, J., Ni, A., Hu, H., Ding, A., and Li, S., "Process-induced Deformation of L-shaped Variable-stiffness Composite Structures during Cure", Composite Structures, Vol. 230, 2019, 111461.   DOI
11 Hubert, P., Johnston, A., Poursartip, A., and Nelson, K., "Cure Kinetics and Viscosity Models for Hexcel 8552 Epoxy Resin," International SAMPE Symposium and Exhibition, SAMPE 1999, pp. 2341-2354.
12 Roozbehjavan, P., Tavakol, B., Ahmed, A., Koushyar, H., Das, R., Joven, R., and Minaie, B., "Experimental and Numerical Study of Distortion in Flat, L-shaped, and U-shaped Carbon Fiber-Epoxy Composite Parts," Journal of Applied Polymer Science, Vol. 131, No. 13, 2014.
13 Lee, W.I., Loos, A.C., and Springer, G.S., "Heat of Reaction, Degree of Cure, and Viscosity of Hercules 3501-6 Resin," Journal of Composite Materials, Vol. 16, No. 6, 1982, pp. 510-520.   DOI
14 Loos, A.C., and Springer, G.S., "Curing of epoxy matrix composites," Journal of Composite Materials, Vol. 17, No. 2, 1983, pp. 135-169.   DOI
15 Bogetti, T.A., and Gillespie, J.W. Jr., "Process-induced Stress and Deformation in Thick-section Thermoset Composite Laminates," Journal of Composite Materials, Vol. 26, No. 5, 1992, pp. 626-660.   DOI
16 Piovan, M.T., and Cortinez, V.H., "Linear Viscoelastic Analysis of Straight and Curved Thin-walled Laminated Composite Beams," International Journal of Solids and Structures, Vol. 45, No. 11-12, 2008, pp. 3466-3493.   DOI
17 Hwang, H.Y., Kim, Y.K., Rim, C., Kwon, Y.D., and Choi, W., "Thermo-viscoelastic Residual Stress Analysis of Metal Liner-inserted Composite Cylinders," KSME International Journal, Vol. 17, No. 2, 2003, pp. 171-180.   DOI