• Title/Summary/Keyword: Viscoelastic Layer

Search Result 167, Processing Time 0.029 seconds

THE STABILITY IN AN INCLINED LAYER OF VISCOELASTIC FLUID FLOW OF HYDROELECTRIC NATURAL CONVECTION

  • El-Bary, A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.17-27
    • /
    • 2005
  • The problem of the onset stability in an inclined layer of dielectric viscoelastic fluid (Walter's liquid B') is studied. The analysis is made under the simultaneous action of a normal a.c. electric field and the natural convection flow due to uniformly distributed internal heat sources. The power series method used to obtain the eigen value equation which is then solved numerically to obtain the stable and unstable solutions. Numerical results are given and illustrated graphically.

  • PDF

OPTIMAL DESIGN OF THE MULTIPLAYER DAMPING MATERIALS USING EQUIVALENT MODELING

  • Hur, D.J.;Lee, D.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • The viscoelastic layer material is widely used to control the noise and vibration characteristics of the panel structure. This paper describes the design technology of the effective vibration damping treatment using the concept of the equivalent parameter of viscoelastic layer materials. Applying the equivalent parameter concepts based on theories of shell, it is possible to simulate the finite element analysis of damping layer panel treatments on the vibration characteristics of the structure. And it is achieved the reduced computational cost and the optimal design of topological distribution for the reduction of vibration effect.

Damping Enhancement of Hingeless Rotor System Using Viscoelastic Material (점탄성 재료를 이용한 무힌지 로터 감쇠 증대)

  • Kim, Do-Hyung;Ko, Eun-Hee;Song, Keun-Woong;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.637-640
    • /
    • 2004
  • Structural damping enhancement of composite flexures and aeroelastic stability of a hingeless rotor system are investigated. Constrained layer damping (CLD) treatments are applied in order to increase structural damping of flexures. Material damping property of viscoelastic layer is modelled as complex modulus. Modal analysis of composite flexures with attached viscoelastic layers and constraining layers are performed using MSC/NASTRAN and the effects of CLD treatments are verified with the modal test results. The composite flexures with CLD are applied to a 4-bladed, 2-meter diameter, Froude-scaled, soft-in-plane hingeless rotor system. The aeroelastic stability is tested at hovering condition and the effects of CLD are investigated. It is shown that the CLD treatment effectively enhance the aeroelastic stability at hover.

  • PDF

Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer (난류 경계층에서 컴플라이언트 코팅된 벽면과 점탄성 벽면의 방사 소음에 관한 실험적 연구)

  • Lee, Chang-Jun;Lee, Seung-Bae;Kwon, O-Sup;Jun, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.294-301
    • /
    • 2003
  • We examine a problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick. open-cell foam with fabric covering and a viscoelastic-painted plate of 1mm thick over an acoustic board of 4mm thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber (k$_{c}$h) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

Vibration Analyses of Cylindrical Hybrid Panel with Viscoelastic Layer Based on Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheng, Tai-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1361-1369
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the nitration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model Is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

Vibration Analyses of Cylindrical Hybrid Panel With Viscoelastic Layer Based On Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheong, Tai-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.772-778
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the vibration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

  • PDF

Seismic Response Characteristics of Layered Ground Considering Viscoelastic Effects of Clay (점성토의 점탄성 특성을 고려한 층상지반의 지진응답특성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.19-26
    • /
    • 2011
  • In order to estimate the viscous effects of clay over a wide range of strain levels, we confirmed the performance of a viscoelastic-viscoplastic constitutive model by simulating cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of natural marine clay. The viscoelastic-viscoplastic constitutive model was then incorporated into an effective stress-based seismic response analysis to estimate the effects of an intermediate clay layer on the behavior of sand layers. Seismic response was simulated by the cyclic viscoelastic-viscoplastic constitutive model created with data recorded at Rokko Island, Kobe, Japan. The results show that a cyclic viscoelastic-viscoplastic constitutive model can provide a good description of dynamic behavior including viscoelastic effects, within a small strain range.

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil;Lim, Hyoung Jun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.217-242
    • /
    • 2022
  • This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Boundary Element Analysis of Stress Singularity at the Interface Corner of Viscoelastic Adhesive Layer Bonded Between Rigid Adherends (강체모재들을 결합하고 있는 점탄성 접착재층의 계면모서리에서 발생하는 응력특이성의 경제요소해석)

  • 이상순;박준수
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • This paper concerns the stress singularity at the interface corner of the viscoelastic adhesive layer bonded between rigid adherends, subjected to a uniform transverse tensile strain. The characteristic equation is derived in the Laplace transformed space, following Williams, and the transformed characteristic equation is inverted analytically into real time space for the viscoelastic model considered here. The order of the singularity is obtained numerically. The time-domain boundary element method is employed to investigate the nature of stresses along the interface. Numerical results show that the order of the singularity increases with time while the free-edge stress intensity factors are relaxed with time.

  • PDF