• Title/Summary/Keyword: Virus Templates

Search Result 12, Processing Time 0.028 seconds

Purification and Characterization of Recombinant Hepatitis C Virus Replicase

  • Park, Chan-Hee;Kee, Young-Hoon;Lee, Jong-Ho;Oh, Jang-Hyun;Park, Jung-Chan;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.881-884
    • /
    • 1999
  • The gene encoding the RNA-dependent RNA polymerase of the hepatitis C virus was cloned and expressed with a C-terminal hexahistidine tag. The protein was purified from Escherichia coli to near homogeneity and characterized in vitro. When the 21 amino acids from the C-terminus of the protein were deleted, an inclusion body was not formed and a better purification yield was achieved. However, the activity of the purified enzyme decreased compared to that of the full length protein. The purified enzyme did exhibit ribonucleotide-incorporation activity on an in vitro transcribed RNA containing the 3' end of the HCV genome. It also possessed ribonucleotide incorporation activity, to a lesser extent, on in vitro transcribed foreign RNA templates when RNA or DNA primers were present. The activity was higher with DNA primers than with RNA primers. Accordingly, this assay system will facilitate the screening of inhibitors for hepatitis C virus replication.

  • PDF

Rapid Detection and Identification of Cucumber Mosaic Virus by Reverse Transcription and Polymerase Chain Reaction (RT-PCR) and Restriction Analysis (역전사 중합효소련쇄반응(RT-PCR)과 제한효소 분석을 이용한 오이 모자이크 바이러스의 신속한 검정과 동정)

  • Park, Won Mok
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.267-274
    • /
    • 1995
  • Based upon the nucleotide sequence of As strain of cucumber mosaic virus (CMV-As0 RNA4, coat protein (CP) gene was selected for the design of oligonucleotide primers of polymerase chain reaction (PCR) for detection and identification of the virus. Reverse transcription and polymerase chain reaction (RT-PCR) was performed with a set of 18-mer CMV CP-specific primers to amplify a 671 bp fragment from crude nucleic acid extracts of virus-infected leaf tissues as well as purified viral RNAs. The minimum concentrations of template viral RNA and crude nucleic acids from infected tobacco tissue required to detect the virus were 1.0 fg and 1:65,536 (w/v), respectively. No PCR product was obtained when potato virus Y-VN RNA or extracts of healthy plants were used as templates in RT-PCR using the same primers. The RT-PCR detected CMV-Y strain as well as CMV-As strain. Restriction analysis of the two individual PCR amplified DNA fragments from CMV-As and CMV-Y strains showed distinct polymorphic patterns. PCR product from CMV-As has a single recognition site for EcoRI and EcoRV, respectively, and the product from CMV-Y has no site for EcoRI or EcoRV but only one site for HindIII. The RT-PCR was able to detect the virus in the tissues of infected pepper, tomato and Chinese cabbage plants.

  • PDF

The Importance of Host Factors for the Replication of Plant RNA Viruses (식물 바이러스 증식에 관여하는 기주 요인의 중요성)

  • Park Mi-Ri;Kim Kook-Hyung
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • All viruses have few genes relative to their hosts. Viruses, thus, utilize many host factors for efficient viral replication in host cell. Virus-host interactions are crucial determinations of host range, replication, and pathology. Host factors participate in most steps of positive-strand RNA virus infection, including entry, viral gene expression, virion assembly, and release. Recent data show that host factors play important roles in assembling the viral RNA replication complex, selecting and recruiting viral RNA replication templates, activating the viral complex for RNA synthesis, and the other steps. These virus-host interactions may contribute to the host specificity and/or pathology. Positive-strand RNA viruses encompass over two-thirds of all virus genera and include numerous pathogens. This review focuses on the importance of host factors involved in positive strand plant RNA virus genome replication.

Colloidal Engineering for Nano-Bio Fusion Research (Nano-Bio 융합 연구를 위한 콜로이드 공학)

  • Moon, Jun Hyuk;Yi, Gi-Ra;Lee, Sang-Yup;So, Jae-Hyun;Kim, Young-Seok;Yoon, Yeo-Kyun;Cho, Young-Sang;Yang, Seung-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.647-659
    • /
    • 2008
  • Colloids are a heterogeneous system in which particles of a few nanometers to hundreds micrometers in size are finely dispersed in liquid medium, but show homogeneous properties in macroscopic scale. They have attracted much attention not only as model systems of natural atomic and molecular self-assembled structures but also as novel structural materials of practical applications in a wide range of areas. In particular, recent advances in colloidal science have focused on nano-bio materials and devices which are essential for drug discovery and delivery, diagnostics and biomedical applications. In this review, first we introduce nano-bio colloidal systems and surface modification of colloidal particles which creates various functional groups. Then, various methods of fabrication of colloidal particles using holographic lithography, microfluidics and virus templates are discussed in detail. Finally, various applications of colloids in metal inks, three-dimensional photonic crystals and two-dimensional nanopatterns are also reviewed as representative potential applications.

Comparison of Digital PCR and Quantitative PCR with Various SARS-CoV-2 Primer-Probe Sets

  • Park, Changwoo;Lee, Jina;Hassan, Zohaib ul;Ku, Keun Bon;Kim, Seong-Jun;Kim, Hong Gi;Park, Edmond Changkyun;Park, Gun-Soo;Park, Daeui;Baek, Seung-Hwa;Park, Dongju;Lee, Jihye;Jeon, Sangeun;Kim, Seungtaek;Lee, Chang-Seop;Yoo, Hee Min;Kim, Seil
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.358-367
    • /
    • 2021
  • The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method, which is the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of the viral RNA by RT-PCR significantly varied according to the sequences of the primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of the viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be equal to or more than that of the RT-qPCR. However, the ddPCR assay is more suitable for determining the copy number of reference materials. These findings suggest that the qPCR assay with the ddPCR defined reference materials could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.

Early Diagnostic Method of Avian Influenza Virus Subtype Using Ultra Real-Time PCR (Ultra Real-Time PCR을 활용한 Avian Influenza Virus Subtype의 조기진단법)

  • Kim, Sang-Tae;Kim, Young-Kyoon;Kim, Jang-Su
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • This ultra real-time PCR (UPCR) based diagnosis system for avian influenza A virus (AIV) subtype was designed. The target primer in this study was derived from H5N1 subtype-specific 133 bp partial gene of hemagglutinin (HA), and was synthesized by using PCR-based gene synthesis on the ground of safety. UPCR was operated by Mini-Opticon Q-PCR Quantitative Thermal Cycler using aptamer-based molecular beacon, total 10 ${\mu}l$ of reaction mixture with extraordinarily short time in each steps in PCR. The detection including UPCR and analysis of melting temperature was totally operated within 15 min. The AIV-specific 133 bp PCR product was correctly amplified until 5 molecules of HA gene as minimum of templates. This kind of PCR was drafted as UPCR in this study and it could be used to detect not only AIV subtype, but also other pathogens using UPCR-based diagnosis.

Development of Multiplex RT-PCR Assays for Rapid Detection and Subtyping of Influenza Type A Viruses from Clinical Specimens

  • Chang, Hee-Kyoung;Park, Jeung-Hyun;Song, Min-Suk;Oh, Taek-Kyu;Kim, Seok-Young;Kim, Chul-Jung;Kim, Hyung-Gee;Sung, Moon-Hee;Han, Heon-Seok;Hahn, Youn-Soo;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1164-1169
    • /
    • 2008
  • We developed multiplex RT-PCR assays that can detect and identify 12 hemagglutinin (H1-H12) and 9 neuraminidase (N1-N9) subtypes that are commonly isolated from avian, swine, and human influenza A viruses. RT-PCR products with unique sizes characteristic of each subtype were amplified by multiplex RT-PCRs, and sequence analysis of each amplicon was demonstrated to be specific for each subtype with 24 reference viruses. The specificity was demonstrated further with DNA or cDNA templates from 7 viruses, 5 bacteria, and 50 influenza A virus-negative specimens. Furthermore, the assays could detect and subtype up to $10^5$ dilution of each of the reference viruses that had an original infectivity titer of $10^6\;EID_{50}/ml$. Of 188 virus isolates, the multiplex RT-PCR results agreed completely with individual RT-PCR subtyping results and with results obtained from virus isolations. Furthermore, the multiplex RT-PCR methods efficiently detected mixed infections with at least two different subtypes of influenza viruses in one host. Therefore, these methods could facilitate rapid and accurate subtyping of influenza A viruses directly from field specimens.

Development of Ultra-rapid Multiplex Real-time PCR for the Detection of Genes from Avian Influenza Virus subtype H5N1 (조류인플루엔자 H5N1 바이러스 유전자의 신속 검출을 위한 초고속 다중 실시간 PCR법의 개발)

  • Kim, Eul-Hwan;Lee, Dong-Woo;Han, Sang-Hoon;Lim, Yoon-Kyu;Yoon, Byoung-Su
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.4
    • /
    • pp.399-407
    • /
    • 2007
  • Cause of high lethality and dissemination to human being, new development of rapid method for the detection of highly pathogenic Avian Influenza Virus (AIV) is still necessary. For the detection of AIV subtype H5N1, typical pathogenic AIV, new method to confirm sub-typing of this virus is also needed. For the purpose of ultra-rapid detection and sub-typing of hemagglutinin and neuraminidase of AIV, this study was planned. As the results we could demonstrate an ultra-rapid multiplex real-time PCR (URMRT PCR) for the detection of AIV In this study, the URMRT PCR were optimized with synthesized AIV H5- and AIV Nl-specific DNA templates and GenSpector TMC, which is a semiconductor process technology based real-time PCR system with high frequencies of temperature monitoring. Under eight minutes, the amplifications of two AIV subtype-specific PCR products were successfully and independently detected by 30 cycled ultra-rapid PCR, including melting point analysis, from $1{\times}10^3$ copies of mixed template DNA. The URMRT PCR for the detection of AIV H5N 1 developed in this study could be expected to apply not only detections of different AIVs, but also various pathogens. It was also discussed that this kind of the fastest PCR based detection method could be improved by advance of related technology in near future.

Detection of psittacine beak and feather disease virus from a caged blue and yellow macaw (Ara ararauna) in Korea (국내 청금강 앵무새(Ara ararauna )에서 psittacine beak and feather disease virus 최초 검출)

  • Kim, Hee-Jung;Kang, Dae-Young;Kim, Eun-Mi;Kim, Eun-Gik;Lee, Bu-Heung;Yeo, Sang-Geon;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.3
    • /
    • pp.219-224
    • /
    • 2014
  • A eight-month-old blue and yellow macaw (Ara ararauna) with psittacine beak and feather disease (PBFD)-suspected signs, such as, abnormal feather, depression and diarrhea, was presented to Animal Disease Intervention Center, Kyungpook National University in 16 April 2014. The partial ORF V1 gene of PBFD virus (PBFDV) was detected by polymerase chain reaction (PCR) from DNA templates extracted from feather, blood and cloacal swab sample of the bird, but no other viral DNAs that often infected in psittacine birds including avian bornavirus and avian polyomavirus were detected from the samples of the bird, indicating this case is due to single infection of PBFDV. Nucleotide sequence analysis of the amplified partial ORF V1 gene was confirmed to have 96.7% and 93.6% homology with that of previously reported PBFDV strain (Genbank no. HM748924 and FJ685980). This report describes the first detection of PBFDV in PBFD-suspected blue and yellow macaw in Korea.

Rapid and Sensitive Detection of Infectious Pancreatic Necrosis Virus (IPNV) by Revers Transcription-Polymerase Chain Reaction (RT-PCR) (PT-PCR 법에 의한 Infectious Pancreatic Necrosis Virus의 조기진단)

  • 강호성;공희정;구현나;박정우;손상규;박명애;김한도
    • Journal of Aquaculture
    • /
    • v.10 no.2
    • /
    • pp.171-178
    • /
    • 1997
  • Infectious pancreatic necrosis virus (IPNY) is an economically important fish pathogen since it causes the high-mortality disease in early stage of hatchery-reared fishes. In order to develop a rapid, sensitive and highly specific detection method for IPNV, reverse transcription-polymerase chain reaction (RT-PCR) was carried out using the oligonucleotide primers selected from the sequence of VP2, a major capsid polypertide of IPNV. As little as 40ng of purified IPNV dsRNA was detected by RT-PCR amplification, but no amplification products were obtained when nucleic acid genomes from other fish pathogens such as IHNV were used as RT-PCR templates. in situ RT-PCR methods are useful for the rapid and sensitive identification of IPNV.

  • PDF