Colloidal Engineering for Nano-Bio Fusion Research

Nano-Bio 융합 연구를 위한 콜로이드 공학

  • Moon, Jun Hyuk (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Yi, Gi-Ra (Korea Basic Science Institute) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • So, Jae-Hyun (Korea Intellectual Property Office) ;
  • Kim, Young-Seok (Korea Electronics Technology Institute, Information Display Research Center) ;
  • Yoon, Yeo-Kyun (Korea Basic Science Institute) ;
  • Cho, Young-Sang (Samsung Advanced Institute of Technology) ;
  • Yang, Seung-Man (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • 문준혁 (서강대학교 화공생명공학과) ;
  • 이기라 (한국기초과학지원연구원 서울센터) ;
  • 이상엽 (연세대학교 화공생명공학과) ;
  • 소재현 (특허청) ;
  • 김영석 (전자부품연구원) ;
  • 윤여균 (한국기초과학지원연구원 서울센터) ;
  • 조영상 (삼성종합기술원) ;
  • 양승만 (한국과학기술원 생명화학공학과)
  • Received : 2008.04.03
  • Accepted : 2008.05.03
  • Published : 2008.08.31

Abstract

Colloids are a heterogeneous system in which particles of a few nanometers to hundreds micrometers in size are finely dispersed in liquid medium, but show homogeneous properties in macroscopic scale. They have attracted much attention not only as model systems of natural atomic and molecular self-assembled structures but also as novel structural materials of practical applications in a wide range of areas. In particular, recent advances in colloidal science have focused on nano-bio materials and devices which are essential for drug discovery and delivery, diagnostics and biomedical applications. In this review, first we introduce nano-bio colloidal systems and surface modification of colloidal particles which creates various functional groups. Then, various methods of fabrication of colloidal particles using holographic lithography, microfluidics and virus templates are discussed in detail. Finally, various applications of colloids in metal inks, three-dimensional photonic crystals and two-dimensional nanopatterns are also reviewed as representative potential applications.

콜로이드는 거시적으로 균일한 성질을 갖는 입자분산계이다. 콜로이드 입자는 다양한 입자분산계의 모델로서 많은 기초연구가 이루어져 왔을 뿐만 아니라, 산업적으로 다양하게 응용이 되었다. 최근에는 나노-바이오 관련 연구에 적용되어 새롭게 각광을 받고 있는 나노 소재중 하나이다. 본 총설에서는 입자 분산계의 정의 및 분류에 대해 간략히 기술하고, 나노-바이오 응용을 위한 표면 성질 및 표면 개질방법에 대해 다룰 것이다. 또한, 기존의 구형의 입자분산계에서 더 나아가, 모양과 크기가 제어된 입자 분산계의 합성에 관한 최근 결과를 소개하였다. 마지막으로, 콜로이드 입자의 나노-바이오 응용분야로서, 금속 콜로이드 잉크와, 3차원 콜로이드 결정을 활용한 나노-바이오 센서, 및 2차원 콜로이드 구조를 이용한 패턴제작과 응용 연구에 대해 살펴보았다.

Keywords

Acknowledgement

Supported by : 서강대학교

References

  1. Jones, R. A. L., "Soft Condensed Matter," Oxford University Press, New York(2002)
  2. Jiguet, S., Bertsch, A., Judelewicz, M., Hofmann, H. and Renaud, P., "SU-8 Nanocomposite Photoresist with Low Stress Properties for Microfabrication Aplications," Microelectronic Eng., 83, 1966-1970(2006) https://doi.org/10.1016/j.mee.2006.02.004
  3. Huh, Y., Jun, Y., Song, H., Kim, S., Choi, J., Lee, J., Yoon, S., Kim, K., Shin, J., Suh, J. and Cheon, J., "In Vivo Magnetic Resonance Detection of Cancer by Using Multifunctional Magnetic Nanocrystals," J. Am. Chem. Soc., 127, 12387-12391(2005) https://doi.org/10.1021/ja052337c
  4. Coe, S., Woo, W., Bawendi, M. and Bulovic, V., "Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices," Nature, 420, 800-803(2002) https://doi.org/10.1038/nature01217
  5. Kraus, T., Malaquin, L., Schmid, H., Riess, W., Spencer, N. D. and Wolf, H., "Nanoparticle Printing with Single-particle Resolution," Nature Nanotech., 2, 570-576(2007) https://doi.org/10.1038/nnano.2007.262
  6. Hynninen, A., Thijssen, J. H. J., Vermolen, E. C. M., Dijkstra, M. and van Blaaderen, A., "Self-assembly Route for Photonic Crystals with a Bandgap in the Visible Region," Nature Mater., 6, 202-205(2007) https://doi.org/10.1038/nmat1841
  7. Taton, T. A., Mirkin, C. A. and Letsinger, R. L., "Scanometric DNA Array Detection with Nanoparticle Probes," Science, 289, 1757-1760(2006)
  8. Bridger, K., Fairhurst, D. and Vincent, B., "Nonaqueous Silica Dispersions Stabilized by Terminally-Grafted Polystyrene Chains," J. Colloids Interface Sci., 68, 190-195(1979) https://doi.org/10.1016/0021-9797(79)90271-6
  9. van Helden, A. K., Jansen, J. W. and Vrij, A., "Preparation and Characterization of Spherical Monodisperse Silica Dispersions in Nonaqueous Solvents," J. Colloids Interface Sci., 81, 354-368 (1981) https://doi.org/10.1016/0021-9797(81)90417-3
  10. Philipse, A. P. and Vrij, A., "Preparation and Properties of Nonaqueous Model Dispersions of Chemically Modified, Charged Silica Spheres," J. Colloids Interface Sci., 128, 121-136(1989) https://doi.org/10.1016/0021-9797(89)90391-3
  11. Stober, W., Fink, A. and Bohn, E., "Controlled Growth of Monodisperse Silica Sphere in the Micron Size Range," J. Colloids Interface Sci., 26, 62-69(1968) https://doi.org/10.1016/0021-9797(68)90272-5
  12. Pugh, R. J. and Bergstom, L., "Surface and Colloid Chemistry in Advanced Ceramics Processing," Marcel Dekker, New York(1994)
  13. Ottewill, R. H. and Rennie, A. R., "Modern Aspects of Colloidal Dispersions," Kluwer Academic Publishers, Netherlands(1998)
  14. Kiselv, A. V. and Lygin, V. I., "Infrared Spectra of Surface Compounds," Wiley, New York(1975)
  15. Jal, P. K., Patel, S. and Mishra, B. K., "Chemical Modification of Silica Surface by Immobilization of Functional Groups for Extractive Concentration of Metal Ions," Talanta, 62, 1005-1028 (2004) https://doi.org/10.1016/j.talanta.2003.10.028
  16. Blitz, I. P., Blitz, J. P., Gun'ko, V. M. and Sheeran, D. J., "Functionalized Silicas: Structural Characteristics and Adsorption of Cu(II) and Pb(II)," Colloids and Surfaces A. 307, 83-92(2007) https://doi.org/10.1016/j.colsurfa.2007.05.016
  17. Grudzien, R. M., Grabicka, B. E. and Jaroniec, M., "Effect of Organosilane/Polymer Ratio on Adsorption Properties of Periodic Mesoporous Ethane-silica," Colloids and Surfaces A. 300, 235-244(2007) https://doi.org/10.1016/j.colsurfa.2006.10.021
  18. Natan, A., Kronik, L., Haick, H. and Tung, R. T., "Electrostatic Properties of Ideal and Non-ideal Polar Organic Monolayers: Implications for Electronic Devices," Adv. Mater., 19, 4103-4117 (2007) https://doi.org/10.1002/adma.200701681
  19. Sandstrom, P. and Akerman, B., "Electrophoretic Properties of DNA-Modified Colloidal Gold NanoParticles," Langmuir, 20, 4182-4186(2004) https://doi.org/10.1021/la036263z
  20. Lee, J.-D., So, J-.H. and Yang, S.-M., "Rheological Behavior and Stability of Concentrated Silica Suspensions," J. Rhology, 43, 1117-1140(1999) https://doi.org/10.1122/1.551018
  21. Caruso, F., "Colloids and Colloid Assemblies," Wiley-VCH(2004)
  22. Lu, Y., Yin, Z.-Y. and Xia, Y., "Colloidal Crystals Made of Polystyrene Spheroids: Fabrication and Structural/Optical Characterization," Langmuir, 18, 7722-7727(2002) https://doi.org/10.1021/la025946w
  23. Kim, J.-W., Larsen, R. J. and Weitz, D. A., "Uniform Nonspherical Colloidal Particles with Tunable Shapes," Adv. Mater., 19, 2005-2009(2007) https://doi.org/10.1002/adma.200602345
  24. Kim, J.-W., Larsen, R. J. and Weitz, D. A., "Synthesis of Nonspherical Colloidal Particles with Anisotropic Properties," J. Am. Soc. Chem., 128, 14373-14377(2006)
  25. Moon, J. H., Kim, A. J., Crocker, J. C. and Yang, S., "Highthroughput Synthesis of Anisotropic Colloids via Holographic Lithography," Adv. Mater., 19, 2508-2512(2007) https://doi.org/10.1002/adma.200700543
  26. Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. and Doyle, P. S., "Continuous Flow Lithography for High-Throughput Microparticle Synthesis," Nat. Mater., 5, 365-369(2006) https://doi.org/10.1038/nmat1617
  27. Pregibon, D. C., Toner, M. and Doyle, P. S., "Multifunctional Encoded Particles for High-throughput Biomolecule Analysis," Science, 315, 1393-1396(2007) https://doi.org/10.1126/science.1134929
  28. Zhang, S., "Fabrication of Novel Biomaterials through Molecular Self-Assembly," Nature Biotech., 21, 1171-1178(2003) https://doi.org/10.1038/nbt874
  29. Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. and Baneyx, F., "Molecular Biomimetics: Nanotechnology through Biology," Nature Mater., 2, 577-585(2003) https://doi.org/10.1038/nmat964
  30. Niemeyer, C., "Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science," Angew. Chem. Int. Ed., 40, 4128-4158(2001) https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  31. Douglas, T. and Young, M., "Host-Guest Encapsulation of Materials by Assembled Virus Protein Cages," Nature, 393, 152-155(1998) https://doi.org/10.1038/30211
  32. Douglas, T. and Young, M., "Virus Particles as Templates for Materials Synthesis," Adv. Mater., 11, 679-681(1999) https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<679::AID-ADMA679>3.0.CO;2-J
  33. Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M. and Young, M., "Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis," Adv. Mater., 14, 415-418(2002) https://doi.org/10.1002/1521-4095(20020318)14:6<415::AID-ADMA415>3.0.CO;2-W
  34. Blum, A. S., Soto, C. M., Wilson, C. D., Cole, J. D., Kim. M., Gnade, B., Chatterji, A., Ochoa, W. F., Lin, T., Johnson, J. E. and Ratna, B. R., "Cowpea Mosaic Virus as Scafford for 3-D Patterning of Gold Nanoparticles," Nano Lett., 4, 867-870(2004) https://doi.org/10.1021/nl0497474
  35. Cheung, C. L., Camarero, J. A., Woods, B. W., Lin, T., Johnson J. E. and De Yoreo, J. J., "Fabrication of Assembled Virus Nanostructures on Templates of Chemoselective Linkers Formed by Scanning Probe Nanolithography," J. Am. Chem. Soc., 125, 6848-6849(2003) https://doi.org/10.1021/ja034479h
  36. Portney, N. G., Martinez-Morales, A. A. and Ozkan, M., "Nanoscale Memory Characterization of Virus-Templated Semiconducting Quantum Dots," ACS-Nano, in press(2008)
  37. Shenton, W., Douglas, T., Young, M., Stubbs, G. and Mann, S., "Inorganic-Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus," Adv. Mater., 11, 253-256 (1999) https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7
  38. Dujardin, E., Peet, C., Stubbs, G., Culver, J. N. and Mann, S., "Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates," Nano Lett., 3, 413-417(2003) https://doi.org/10.1021/nl034004o
  39. Lee, S., Royston, E., Culver, J. N. and Harris, M. T., "Improved Metal Cluster Deposition on a Genetically Engineered Tobacco Mosaic Virus Template," Nanotechnology, 16, s435-s441(2005) https://doi.org/10.1088/0957-4484/16/7/019
  40. Lee, S., Choi, J., Royston, E., Janes, D. B., Culver, J. N. and Harris, M. T., "Deposition of Platinum Clusters on Surface-Modified Tobacco Mosaic Virus," J. Nanosci. Nanotech., 6, 974-981(2006) https://doi.org/10.1166/jnn.2006.146
  41. Royston, E., Ghosh, A., Kofinas, P., Harris, M. T. and Culver, J. N., "Self-Assembly of Virus-Structured High Surface Area Nanomaterials and Their Application as Battery Electrodes," Langmuir, 24, 906-912(2008) https://doi.org/10.1021/la7016424
  42. Mao, C., Solis, D. J., Reiss, B. R., Kottmann, S. T., Sweeney, R. Y., Hayhurst, A., Georgiou, G., Iverson, B. and Belcher, A. M., "Virus-based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires," Science, 303, 213-217(2004) https://doi.org/10.1126/science.1092740
  43. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. and Belcher A. M., "Selection of Peptides with Semiconductor Binding Specificity for Directed Nanocrystal Assembly," Nature, 405, 665-668(2000) https://doi.org/10.1038/35015043
  44. Nam, K. T., Kim, D., Yoo, P. J., Chiang, C., Meethong, N., Hammond, P. T., Chiang, Y. and Belcher, A. M., "Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes," Science, 312, 885-888(2006) https://doi.org/10.1126/science.1122716
  45. Lee, S., Mao, C., Flynn, C. E. and Belcher, A. M., "Ordering Quntum Dots Using Genetically Engineered Viruses," Science, 296, 892-895(2002) https://doi.org/10.1126/science.1068054
  46. Lee, S., Lee, S. K. and Belcher A. M., "Virus-based Alignment of Inorganic, Organic, and Biological Nanosized Materials," Adv. Mater., 15, 689-692(2003) https://doi.org/10.1002/adma.200304818
  47. Baus, M., Rull, L. F. and Ryckaert, J. P., Observation, Prediction and Simulation of Phase Transitions in Complex Fluids: Proceedings of NATO Advanced Study Institute, Varenna, Italy, Kluwer Academic Publishers, Dordrecht(1995)
  48. Lee, S., Culver, J. N. and Harris, M. T., "Effects of CuCl2 Concentration on the Aggregation and Mineralization of Tobacco Mosaic Virus Biotemplate," J. Colloid Interface Sci., 297, 554-560(2006) https://doi.org/10.1016/j.jcis.2005.11.039
  49. Scholz, D. L., Curtis, C. J. and Ginley, D. S., "Surface Chemistry of Copper Nanoparticles and Direct Spray Printing of Hybrid Particle/Metallorganic Inks," Electrochem. Solid-State. Lett., 4, C58-C61(2001) https://doi.org/10.1149/1.1385308
  50. Safael, A., Shandlz, M. A., Sanjabi, S. and Barber, Z. H., "Modelling the Size Effect on the Melting Temperature of Nanoparticles, Nanowires and Nanofilms," J. Phys.: Condens. Mater., 19, 216216-216225(2007) https://doi.org/10.1088/0953-8984/19/21/216216
  51. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P., "High-resolution Inkjet Printing of All-polymer Transistor Circuits," Science, 290, 2123-2126(2000) https://doi.org/10.1126/science.290.5499.2123
  52. Yamada, M., Maesaka, M., Kurihara, M., Sakamoto, M. and Miyake, M., "Novel Synthetic Approach to Creating PtCo Alloy Nanoparticles by Reduction of Metal Coordination Nano-polymers," Chem. Commun., 4851-4853(2005)
  53. Kim, J. H., Germer, T. A., Mulholland, G. W. and Ehrman, S. H., "Size-Monodisperse Metal Nanoparticles via Hydrogel-Free Spray Pyrolysis," Adv. Mater., 7, 518-521(2002)
  54. Xia, Y. and Sun, Y., "Shape-Controlled Synthesis of Gold and Silver Nanoparticles," Science, 13, 2176-2179(2002)
  55. Esumi, K., Tano, T., Torigoe, K. and Meguro, K., "Preparation and Characterization of Bimetallic Palladium-copper Colloids by Thermal Decomposition of Their Acetate Compounds in Organic Solvents," Chem. Mater., 2, 564-567(1990) https://doi.org/10.1021/cm00011a019
  56. Huang, H. H., Ni, X. P., Loy, G. L., Chew, C. H., Tan, K. L., Loh, F. C., Deng, J. F. and Xu, G. Q., "Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone)," Langmuir, 12, 909-912(1996) https://doi.org/10.1021/la950435d
  57. Kim, D., Jeong, S. and Moon, J., "Synthesis of Silver Nanoparticles Using the Polyol Process and the Influence of Precursor Injection," Nanotech., 17, 4019-4024(2006) https://doi.org/10.1088/0957-4484/17/16/004
  58. Kamyshny, A., Ben-Moshe, M., Aviezer, S. and Magdassi, S., "Ink-Jet Printing of Metallic Nanoparticles and Microemulsions," Macromol. Rapid Commun., 26, 281-288(2005) https://doi.org/10.1002/marc.200400522
  59. Bidoki, S. M., Lewis, D. M., Clark, M., Vakorov, A., Millner, P. A. and McGorman, D., "Ink-jet Fabrication of Electronic Components," J. Micromech. Microeng., 17, 967-974(2007) https://doi.org/10.1088/0960-1317/17/5/017
  60. Shipway, A. N., Lahav, M. and Willner, I., "Nanostructured Gold Colloid Electrodes," Adv. Mater., 12, 993-998(2000) https://doi.org/10.1002/1521-4095(200006)12:13<993::AID-ADMA993>3.0.CO;2-3
  61. Jiang, P. and McFarland, M. J., "Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating," J. Am. Chem. Soc., 126, 13778-13786(2004) https://doi.org/10.1021/ja0470923
  62. Jiang, P., Prasad, T., McFarland, M. J. and Colvin, V. L., "Two-Dimensional Nonclose-Packed Colloidal Crystals Formed by Spincoating," Appl. Phys. Lett., 89, 011908(2006) https://doi.org/10.1063/1.2218832
  63. Sun, C. H., Linn, N. C. and Jiang, P., "Templated Fabrication of Periodic Metallic Nanopyramid Arrays," Chem. Mater., 19, 4551-4556(2007) https://doi.org/10.1021/cm0712319
  64. Xu, X., Goponenko, A. V. and Asher, S. A., "Polymerized Poly-HEMA Photonic Crystals: pH and Ethanol Sensor Materials," J. Am. Chem. Soc., in press (2008)
  65. Ben-Moshe, M., Alexeev, V. and Asher, S., "Fast Responsive Crystalline Colloidal Array Photonic Crystal Glucose Sensors," Anal. Chem., 78, 5149-5157(2006) https://doi.org/10.1021/ac060643i
  66. Walker, J. P. and Asher, S. A., "Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal," Anal. Chem., 77, 1596-1600(2005) https://doi.org/10.1021/ac048562e
  67. Alexeev, V. L., Das, S., Finegold, D. N. and Asher, S. A., "Photonic Crystal Glucose-Sensing Material for Noninvasive Monitoring of Glucose in Tear Fluid," Clinic. Chem., 50, 2353-2360(2004) https://doi.org/10.1373/clinchem.2004.039701
  68. Shim, G. H., Han, M. G., Sharp-Norton, J. C., Creager, S. E. and Foulger, S. H., "Inkjet-printed Electrochromic Devices Utilizing Polyaniline-silica and Poly(3,4-ethylenedioxythiophene)-silica Colloidal Composite Particles," J. Mater. Chem., 18, 594-601(2008) https://doi.org/10.1039/b712766a
  69. Ying, Y., Shim, G. H., Lawrence, J. R., Carroll, J. B., Roeder, R. D., Houchins, J. M., Huebner, C. F. and Foulger, S. H., "Functionalization of Crystalline Colloidal Arrays through Click Chemistry," Adv. Mater., 19, 3507-3512(2007) https://doi.org/10.1002/adma.200602901
  70. Xia, J., Ying, Y. and Foulger, S. H., "Electric-Field-Induced Rejection-Wavelength Tuning of Photonic-Bandgap Composites," Adv. Mater., 17, 2463-2467(2005) https://doi.org/10.1002/adma.200501166
  71. Lawrence, J., Shim, G., Jiang, P., Han, M., Ying, Y. and Foulger, S. H., "Dynamic Tuning of Photoluminescent Dyes in Crystalline Colloidal Arrays," Adv. Mater., 17, 2344-2349(2005) https://doi.org/10.1002/adma.200500617
  72. Li, Jianzhao., Peter, Heman., Christopher, Valdivia., Vladimir, Kitaev. and Geoffrey, Ozin., "Colloidal Photonic Crystal Cladded Optical Fibers: Towards a New Type of Photonic Band Gap Fiber," Optics Express, 13, 6454-6459(2005) https://doi.org/10.1364/OPEX.13.006454
  73. Lee, S.-K., Yi, G.-R. and Yang, S.-M., "High-speed Fabrication of Patterned Colloidal Photonic Structures in Centrifugal Microfluidic Chips," Lab Chip, 6, 1171-1177(2006) https://doi.org/10.1039/b606448e
  74. Lee, S.-K., Park, S.-G., Moon, J. H. and Yang, S.-M., "Holographic Fabrication of Photonic Nanostructures for Optofluidic Integration," Lab Chip, 8, 388-391(2008) https://doi.org/10.1039/b717960j
  75. Choi, C. J. and Cunningham, B. T., "A 96-well Microplate Incorporating a Replica Molded Microfluidic Network Integrated with Photonic Crystal Biosensors for High Throughput Kinetic Biomolecular Interaction Analysis," Lab Chip, 7, 550-556(2007) https://doi.org/10.1039/b618584c
  76. Orosco, M. M., Pacholski, C., Miskelly, G. M. and Sailor, M. J., "Protein-Coated Porous-Silicon Photonic Crystals for Amplified Optical Detection of Protease Activity," Adv. Mater., 18, 1393-1396(2006) https://doi.org/10.1002/adma.200502420
  77. Willets, K. A. and Van Duyne, R. P., "Localized Surface Plasmon Spectroscopy and Sensing," Ann. Rev. Phys. Chem., 58, 267-97(2007) https://doi.org/10.1146/annurev.physchem.58.032806.104607
  78. Hicks, E. M., Lyandres, O., Hall, W. P., Zou, S., Glucksberg, M. R. and Van Duyne, R. P., "Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography," J. Phys. Chem. C. 111, 4116-4124(2007) https://doi.org/10.1021/jp064094w
  79. Zhao, J., Zhang, X., Yonzon, C., Haes, A. J. and Van Duyne, R. P., "Localized Surface Plasmon Resonance Biosensors," Nanomedicine, 1, 219-228(2006) https://doi.org/10.2217/17435889.1.2.219
  80. Shah, N. C., Lyandres, O., Walsh Jr. J. T., Glucksberg, M. R. and Van Duyne, R. P., "Lactate and Sequential Lactate-Glucose Sensing Using Surface-Enhanced Raman Spectroscopy," Anal. Chem., 79, 6927-6932(2007) https://doi.org/10.1021/ac0704107
  81. Zhang, X., Shah, N. C. and Van Duyne, R. P., "Sensitive and Selective Chem/bio Sensing Based on Surface-enhanced Raman Spectroscopy (SERS)," Vibrational Spectroscopy, 42, 2-8(2006) https://doi.org/10.1016/j.vibspec.2006.02.001
  82. Arsenault, A. C., Clark, T. J., von Freymann, G., Cademartiri, L., Sapienza, R., Bertolotti, J., Vekris, E., Wong, S., Kitaev, V., Manners, I., Wang, R. Z, John, S., Wiersma, D. and Ozin, G. A., "From Colour Fingerprinting to the Control of Photoluminescence in Elastic Photonic Crystals," Nature Mater., 5, 179-184(2006) https://doi.org/10.1038/nmat1588