• Title/Summary/Keyword: Virulence gene

Search Result 310, Processing Time 0.032 seconds

Virulence gene profiles and antimicrobial susceptibility of Salmonella Brancaster from chicken

  • Evie Khoo ;Roseliza Roslee ;Zunita Zakaria;Nur Indah Ahmad
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.82.1-82.12
    • /
    • 2023
  • Background: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years. Objective: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia. Methods: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s). Results: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3")-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected. Conclusion: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.

Contribution of the murI Gene Encoding Glutamate Racemase in the Motility and Virulence of Ralstonia solanacearum

  • Choi, Kihyuck;Son, Geun Ju;Ahmad, Shabir;Lee, Seung Yeup;Lee, Hyoung Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2020
  • Bacterial traits for virulence of Ralstonia solanacearum causing lethal wilt in plants were extensively studied but are not yet fully understood. Other than the known virulence factors of Ralstonia solanacearum, this study aimed to identify the novel gene(s) contributing to bacterial virulence of R. solanacearum. Among the transposon-inserted mutants that were previously generated, we selected mutant SL341F12 strain produced exopolysaccharide equivalent to wild type strain but showed reduced virulence compared to wild type. In this mutant, a transposon was found to disrupt the murI gene encoding glutamate racemase which converts L-glutamate to D-glutamate. SL341F12 lost its motility, and its virulence in the tomato plant was markedly diminished compared to that of the wild type. The altered phenotypes of SL341F12 were restored by introducing a full-length murI gene. The expression of genes required for flagella assembly was significantly reduced in SL341F12 compared to that of the wild type or complemented strain, indicating that the loss of bacterial motility in the mutant was due to reduced flagella assembly. A dramatic reduction of the mutant population compared to its wild type was apparent in planta (i.e., root) than its wild type but not in soil and rhizosphere. This may contribute to the impaired virulence in the mutant strain. Accordingly, we concluded that murI in R. solanacearum may be involved in controlling flagella assembly and consequently, the mutation affects bacterial motility and virulence.

Riboprint and Virulence Gene Patterns for Bacillus cereus and Related Species

  • Kim, Young-Rok;Batt, Carl A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1146-1155
    • /
    • 2008
  • A total of 72 Bacillus cereus strains and 5 Bacillus thuringiensis strains were analyzed for their EcoRI ribogroup by ribotyping and for the presence or absence of seven virulence-associated genes. From these 77 strains, 42 distinctive ribogroup were identified using EcoRI, but the two species could not be discriminated by their EcoRI ribogroup. The 77 strains were also examined by PCR for the presence of seven virulence-associated genes, cerAB, pi-plc, entFM, bceT, hblA, hblC, and hblD. All five Bacillus thuringiensis strains were positive for these genes. Although differences in the patterns of virulence genes were observed among the different B. cereus strains, within any given ribogroup the patterns of the seven virulence genes was the same. Pulsed-field gel electrophoresis (PFGE) analysis in combination with available chromosomal maps for a selected group of B. cereus strains revealed significant differences in their chromosome size and the placement of virulence genes. Evidence for significant rearrangements within the B. cereus chromosome suggests the mechanism through which the pattern of virulence-associated genes varies. The results suggest linkage between ribogroups and virulence gene patterns as well as no apparent containment of the latter within any particular species boundary.

Virulence factors, antimicrobial resistance patterns, and genetic characteristics of hydrogen sulfide-producing Escherichia coli isolated from swine

  • Park, Hyun-Eui;Shin, Min-Kyoung;Park, Hong-Tae;Shin, Seung Won;Jung, Myunghwan;Im, Young Bin;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.191-197
    • /
    • 2015
  • Escherichia (E.) coli is commensal bacteria found in the intestine; however, some pathogenic strains cause diseases in animals and humans. Although E. coli does not typically produce hydrogen sulfide ($H_2S$), $H_2S$-producing strains of E. coli have been identified worldwide. The relationship between virulence and $H_2S$ production has not yet been determined. Therefore, characteristics of $H_2S$-producing isolates obtained from swine feces were evaluated including antibiotic resistance patterns, virulence gene expression, and genetic relatedness. Rates of antibiotic resistance of the $H_2S$-producing E. coli varied according to antibiotic. Only the EAST1 gene was detected as a virulence gene in five $H_2S$-producing E. coli strains. Genes conferring $H_2S$ production were not transmissible although the sseA gene encoding 3-mercaptopyruvate sulfurtransferase was detected in all $H_2S$-producing E. coli strains. Sequences of the sseA gene motif CGSVTA around Cys238 were also identical in all $H_2S$- producing E. coli strains. Diverse genetic relatedness among the isolates was observed by pulsed-field gel electrophoresis analysis. These results suggested that $H_2S$-producing E. coli strains were not derived from a specific clone and $H_2S$ production in E. coli is not associated with virulence genes.

Exploration of Virulence Markers and Genes of Listeria monocytogenes Isolated from Animal Products (축산물유래 Listeria monocytogenes의 virulence marker 및 gene 조사)

  • Yi, Chul-Hyeon;Song, Hyeon-Ho;Kim, Mi-Ryung;Kang, Ho-Jo;Son, Won-Geun
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.248-256
    • /
    • 2008
  • To investigate the epidemiological characteristics of 68 Listeria monocytogenes isolates, including 11 reference strains and 57 isolates from imported US beef, domestic meats(beef, pork, chicken meat), raw milk, and milk plants. L. monocytogenes was to evaluate the production of virulence proteins, such as hemolysin(LLO) and lecithinase(LCP), the adsorption of Congo red(CRA), and to detect virulence genes using the polymerase chain reaction(PCR). In the study of virulence protein production, 68(100%), 62(91.2%), and 54(79.4%) of the 68 L. monocytogenes strains were positive for LLO production, the LCP test, and the CRA test, respectively, while strains of other species, such as L. innocua, L. gray, L. murrayi, and L. welshimeri, were not. There were no significant differences between L. monocytogenes serotypes and the ability to produce LLO or LCP. L. monocytogenesstrains had very high hemolytic titers(2 to 16 fold), while the other Listeria species, other than L. ivanovii and L. seeligeri, did not. The hemolysin activities of L. monocytogenes, L. ivanovii, and L. seeligeri usually exceeded 1.0 HU/mg, while those of other Listeria spp. were less than 0.04 HU/mg. In the PCR assay, all of the L. monocytogenes strains contained the hlyA, plcA, plcB, inlA, and inlB virulence genes and produced a product of the expected size. In the PCR of the actA gene, the expected 385-bp product was seen in 39(57.4%) L. monocytogenesstrains, while an unexpected 268-bp product was seen in 29(42.6%) strains. Most L. monocytogenes strains isolated from Hanwoo beef produced the 385-bp actA gene product, while strains of imported US beef usually produced the 268-bp actA gene product. By contrast, no virulence gene products were amplified in the other Listeria spp.

The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae

  • Kim, Jieun;Mannaa, Mohamed;Kim, Namgyu;Lee, Chaeyeong;Kim, Juyun;Park, Jungwook;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.412-425
    • /
    • 2018
  • The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to $H_2O_2$, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to $H_2O_2$ induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.

Characterization of Pyrenophora graminea Markers Associated with a Locus Conferring Virulence on Barley

  • Mokrani, Lubna;Jawhar, Mohammad;Shoaib, Amina;Arabi, Mohammad Imad Eddin
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.290-294
    • /
    • 2012
  • The fungus Pyrenophora graminea is the causal agent of barley leaf stripe disease. Two leaf stripe isolates PgSy3 (exhibiting high virulence on the barley cultivar 'Arabi Abiad') and PgSy1 (exhibiting low virulence on Arabi Abiad), were mated and 63 progeny were isolated and phenotyped for the reaction on Arabi Abiad. The population segregated in a 1:1 ratio, 32 virulent to 31 avirulent (${\chi}^2$ = 0.05, P = 0.36), indicating single gene control of PgSy3 virulence on Arabi Abiad. Among 96 AFLP markers identified, three AFLP markers, E37M50-400, E35M59-100 and E38M47-800 were linked to the virulence locus VHv1 in isolate PgSy3. The results of this study indicate that (the three markers) are closely linked to VHv1 and are unique to isolates carrying the virulence locus. This work represents an initial step towards map-based cloning of VHv1 in P. graminea.

Diversity of PthA Gene of Xanthomonas Strains Causing Citrus Bacterial Canker and its Relationship with Virulence

  • Lee, Seung-Don;Lee, Jung-Hee;Lee, Dong-Hee;Lee, Yong-Hoon
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.357-360
    • /
    • 2008
  • Several pathotypes have been recognized in citrus bacterial canker, which causing serious damage in citrus cultivation area. To control the disease, it is important to understand the pathological diversity and reason of difference in virulence of the causal pathogen. We analyzed 124 strains of Xanthomonas causing citrus bacterial canker by southern hybridization with an internal 3.4-kb BamHI fragment from pthA gene. Assuming each band represented an intact gene, each strain of Xanthomonas was estimated to have approximately 1 to 4 copies of pthA gene. X. a. pv. citri A type had more than 3 copies of pthA gene, and the number of pthA gene in X. a. pv. citri $A^*,\;A^w$, and X. a. pv. aurantifolii B, C were different from 1 to 3 according to the strains. When the pthA gene profile was classified into 13 groups according to the number and size of hybridization bands, most of the A types belong to the 3A group, and 4A and 4B type was dominant when they had 4 bands. However, there was no general pattern of difference between the virulence and pthA gene group in this test.

Virulence genes of Streptococcus mutans and dental caries

  • You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.44 no.2
    • /
    • pp.31-36
    • /
    • 2019
  • Streptococcus mutans is one of the important bacteria that forms dental biofilm and cause dental caries. Virulence genes in S. mutans can be classified into the genes involved in bacterial adhesion, extracellular polysaccharide formation, biofilm formation, sugar uptake and metabolism, acid tolerance, and regulation. The genes involved in bacterial adhesion are gbps (gbpA, gbpB, and gbpC) and spaP. The gbp genes encode glucan-binding protein (GBP) A, GBP B, and GBP C. The spaP gene encodes cell surface antigen, SpaP. The genes involved in extracellular polysaccharide formation are gtfs (gtfB, gtfC, and gtfD) and ftf, which encode glycosyltransferase (GTF) B, GTF C, and GTF D and fructosyltransferase, respectively. The genes involved in biofilm formation are smu630, relA, and comDE. The smu630 gene is important for biofilm formation. The relA and comDE genes contribute to quorumsensing and biofilm formation. The genes involved in sugar uptake and metabolism are eno, ldh, and relA. The eno gene encodes bacterial enolase, which catalyzes the formation of phosphoenolpyruvate. The ldh gene encodes lactic acid dehydrogenase. The relA gene contributes to the regulation of the glucose phosphotransferase system. The genes related to acid tolerance are atpD, aguD, brpA, and relA. The atpD gene encodes $F_1F_0$-ATPase, a proton pump that discharges $H^+$ from within the bacterium to the outside. The aguD gene encodes agmatine deiminase system and produces alkali to overcome acid stress. The genes involved in regulation are vicR, brpA, and relA.

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.