• Title/Summary/Keyword: Virulence PCR

Search Result 156, Processing Time 0.027 seconds

Comparison of Virulence Factors, Phylogenetic Groups and Ciprofloxacin Susceptibility of Escherichia coli Isolated from Healthy Students and Patients with Urinary Tract Infections in Korea

  • Park, Min;Park, Soon-Deok;Kim, Sa-Hyun;Woo, Hyun-Jun;Lee, Gyu-Sang;Kim, Hyun-Woo;Yang, Ji-Young;Cho, Eun-Hee;Uh, Young;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2012
  • Urinary tract infection (UTI) is one of the most common bacterial infections and is predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC strains generally possess several genes encoding virulent factors, which are mostly adhesins, toxins, bacteriocin and siderophores. E. coli is composed of four main phylogenetic group (A, B1, B2, D) and virulent extra-intestinal strains mainly belong to groups B2 and D. Prescription of ciprofloxacin, a kind of fluoroquinolone group antibiotics, is increasing now a days, but resistance to this drug is also increasing. A total of 188 strains of E. coli were collected. Thirteen strains were collected from healthy students in 2011 and 175 strains from patients with urinary tract infection in 2010. Virulence factor genes (papC, fimG/H, sfaD/E, hlyA, cnf1, and usp) were amplified by polymerase chain reaction (PCR) methods for phylogenetic group (A, B1, B2, D) detection. Ciprofloxacin susceptibility test was performed by disk diffusion method. The identified virulence factors (VFs), phylogenetic groups and ciprofloxacin resistance in 13 E. coli strains isolated from healthy students were papC (15.4%), fimG/H (76.9%), sfaD/E (30.8%), hlyA (23.1%), cnf1 (23.1%), usp (7.7%), phylogenetic group A (23%), B1 (8%), B2 (46%), D (23%) and ciprofloxacin resistance (7.7%), while those of in 175 E. coli strains isolated from patients with UTI were papC (41.1%), fimG/H (92.5%), sfaD/E (30.3%), hlyA (10.3%), cnf1 (30.3%), usp (27.4%), phylogenetic group A (9.1%), B1 (5.1%), B2 (60.6%), D (25.1%) and ciprofloxacin resistance (29.7%). In this study, 10 out of 13 E. coli strains (76.9%) from healthy students were found to possess more than one virulence factor associated with adhesion. In addition, one E. coli strain isolated from healthy students who had never been infected with UPEC showed ciprofloxacin resistance. According to these results between the virulence factors and phylogenetic groups it was closely associated, and UPEC strains isolated from patients showed high level of ciprofloxacin resistance.

PCR Detection of Virulence Genes Encoding Coagulase and Other Toxins among Clinical Methicillin-Resistant Staphylococcus aureus Isolates (Methicillin 내성 S. aureus 임상분리균주의 Coagulase와 주요 독소 유전자의 PCR 검출)

  • Jung Hye-Jin;Cho Joon-Il;Song Eun-Seop;Kim Jin-Ju;Kim Keun-Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.207-214
    • /
    • 2005
  • To characterize the genotypic traits of clinical methicillin-resistant Staphyiococus aureus (MRSA) isolates (n=49), major virulence-associated genes were detected by using PCR-based methods. All the MRSA isolates possessed coagulase gene and showed four polymorphism types [500bp ($6{\%}$),580bp ($27{\%}$), 660bp ($65{\%}$) and 740bp ($2{\%}$)] due to variable numbers of tandem repeats present within the gene. The four or five different loci of hemolysin gene family were dominant in the MRSA isolates,25 of which($51{\%}$) possessed a combination of hla / hlb / hld/ hlg / hlg-2 genes as the most prevalent type. The prevalence of enterotoxin genes was varied among the MRSA isolates. sea and seb genes were detected from all the MRSA isolates. But sei, tsst-1, seg, sec, and seh genes were detected from 31 ($63{\%}$), 16 ($33{\%}$), 14 ($29{\%}$), 8 ($16{\%}$), and 5 ($10{\%}$) isolates, respectively. sed and sej genes were detected from 1 ($2{\%}$) isolate, respectively. see, eta, and etb genes were not detected at all. sea / seb genes were co-detected from 11 ($23{\%}$) isolates, sea / seb / sei genes from 9 ($19{\%}$) isolates, and sea / seb / seg / sei / tsst-1 genes from 5 ($10{\%}$) isolates. Other genes were co-detected with below $10{\%}$ frequencies.

Prevalence and Classification of Escherichia coli Isolated from bibimbap in Korea (비빔밥에서 분리한 대장균의 오염도 조사 및 특성 연구)

  • Lee, Da-Yeon;Lee, Joo-Young;Wang, Hae-Jin;Shin, Dong-Bin;Cho, Yong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.126-131
    • /
    • 2015
  • Pathogenic Escherichia coli is recognized as an important cause of diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome worldwide. This study was conducted to investigate the prevalence E. coli contamination in the Korean traditional food bibimbap. E. coli were isolated from 84 of 1142 (7.3%) bibimbap investigated from 2005 to 2011. Antibiotic resistance profiling demonstrated that 6 of the 84 isolates (7.2%) showed multiple drug resistance. Fifteen virulence genes specific for pathogenic E. coli such as Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and enteroaggregative E. coli (EAEC) were examined by multiplex PCR for mixed bacterial cultures derived from bibimbap samples. The EPEC virulence gene (ent) was detected in 5 strains (5.9%), while ETEC, EAEC, and EIEC were not detected. STEC serotypes O103 (1.2%), O91 (1.2%), and O128 (6.0%) were found, but other serogroups such as O26, O157, O145, O111 and O121 were not detecded. Automated Repetitive-Sequence-Based PCR analysis showed different patterns.

Involvement of Growth-Promoting Rhizobacterium Paenibacillus polymyxa in Root Rot of Stored Korean Ginseng

  • Jeon, Yong-Ho;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.881-891
    • /
    • 2003
  • Paenibacillus polymyxa is a plant growth-promoting rhizobacterium (PGPR) which can be used for biological control of plant diseases. Several bacterial strains were isolated from rotten roots of Korean ginseng (Panax ginseng C. A. Meyer) that were in storage. These strains were identified as P. polymyxa, based on a RAPD analysis using a P. polymyxa-specific primer, cultural and physiological characteristics, an analysis utilizing the Biolog system, gas chromatography of fatty acid methyl esters (GC-FAME), and the 16S rDNA sequence analysis. These strains were found to cause the rot in stored ginseng roots. Twenty-six P. polymyxa strains, including twenty GBR strains, were phylogenetically classified into two groups according to the ERIC and BOX-PCR analyses and 16S rDNA sequencing, and the resulting groupings systematized to the degrees of virulence of each strain in causing root rot. In particular, highly virulent GBR strains clustered together, and this group may be considered as subspecies or biovar. The virulence of the strains seemed to be related to their starch hydrolysis enzyme activity, but not their cellulase or hemicellulase activity, since strains with reduced or no starch-hydrolytic activity showed little or no virulence. Artificial inoculation of the highly virulent strain GBR-1 onto the root surfaces of Korean ginseng resulted in small brown lesions which were sunken and confined to the outer portion of the root. Ginseng root discs inoculated in vitro or two-year-old roots grown in soil drenched with the inoculum developed significant rot only when the inoculum density was $10^{6}-10^{7}$ or more colony-forming units (CFU) per ml. These results suggest that P. polymyxa might induce ginseng root rot if their population levels are high. Based on these results, it is recommended that the concentration of P. polymyxa should be monitored, when it is used as a biocontrol agent of ginseng, especially in the treatment of stored roots.

Effect of Gamma Irradiation on the Expression of Gene Endoding Metalloprotease in Vibrio vulnificus (감마선 조사가 vibrio vulnificus의 Metalloprotease 유전자 발현에 미치는 영향)

  • Jung, Jin-Woo;Lim, Sang-Yong;Joe, Min-Ho;Yun, Hye-Jeong;Hur, Jung-Mu;Kim, Dong-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • To check the microbiological safety with respect to increased virulence of surviving pathogens after irradiation, in this study, the transcriptional change of vvp gene encoding metalloprotease, which is one of the typical virulence factors of Vibrio mulnificus, was monitored by real-time PCR during the course of growth cycle after reinoculation of irradiated Vibrio. When V. vulnificus was exposed to a dose of 0.5 and 1 kGy, the lag period before growth resumption of sub-cultures became longer than non-irradiated counterpart as increase of irradiation dose. In the case of non-irradiated culture, the transcription of vvp was significantly activated at 15 h after inoculation, when bacterial growth reached the stationary phase, and the highest level of pretense activity (686 U/mL) was measured at the same time. Interestingly, vvp expression of irradiated Vibrio was turned up earlier than non-irradiated Vibrio during the mid log phase of growth, whereas these rapid induction of vvp expression from irradiated cells didn't result in an increase of metalloprotease production. When Vibrio was irradiated at 0.5 and 1 kGy, the protease activities peaked at 18 h after inoculation and the levels of activities were lower 1.2- and 1.4-fold, respectively, compared to the non-irradiated counterpart. Results from this study indicate that gamma radiation is not likely to activate the virulence ability of surviving Vibrio.

Distinct Genetic Variation of Helicobacter pylori cagA, vacA, oipA, and sabA Genes in Thai and Korean Dyspeptic Patients

  • Boonyanugomol, Wongwarut;Kongkasame, Worrarat;Palittapongarnpim, Prasit;Jung, Myunghwan;Shin, Min-Kyoung;Kang, Hyung-Lyun;Baik, Seung-Chul;Lee, Woo-Kon;Cho, Myung-Je
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.261-268
    • /
    • 2018
  • Differences in host ethnicities and geographical distributions may influence the genetic variation and pathogenesis of Helicobacter pylori strains, particularly with respect to those with a high risk of gastric cancer and in Asian Enigma regions. We simultaneously identified H. pylori virulence-associated genes involved in inflammation and cell damage in Thai and Korean dyspeptic patients. The virulence-associated gene cagA, cagA genotypes (East Asian and Western type cagA), vacA genotypes (s- and m-), oipA, and sabA were detected in Thai and Korean dyspeptic patients by polymerase chain reaction (PCR), real-time PCR, and DNA sequence analysis. Comparisons between the two regions showed that cagA, East Asian type cagA, and vacA s1/m1 in Korean dyspeptic patients occurred at rates of 100%, 86.67%, and 88.89%, respectively (p < 0.05). The oipA- and sabA-positive samples were significantly more predominant in the Korean population (95.56%, 91.11%) than in the Thai population (32%, 34%). DNA sequence analysis revealed differences in the patterns of cytosine-thymine dinucleotide repeats of oipA and sabA among the two populations of dyspeptic patients. Our results indicate that the H. pylori strains detected in the two regions were divergent, and strains colonizing the Korean dyspeptic patients may be more virulent than those in the Thai population. Our data may help explain H. pylori pathogenesis in Asian Enigma areas with a low gastric cancer incidence. However, other factors involving H. pylori infection in these two regions should be further analyzed.

Novel Peptide Nucleic Acid Melting Array for the Detection and Genotyping of Toxoplasma gondii

  • Suh, Soo Hwan;Yun, Han Seong;Lee, Sang-Eun;Kwak, Hyo-Sun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.645-650
    • /
    • 2019
  • Despite differences in virulence between strains of Toxoplasma gondii, rapid and accurate genotyping methods are lacking. In this study, a method was developed to detect and genotype T. gondii in food and environmental samples using PCR and a novel peptide nucleic acid (PNA) melting array. An alignment of genome sequences for T. gondii type I, II, and III obtained from NCBI was generated, and a single nucleotide polymorphism analysis was performed to identify targets for PCR amplification and a PNA melting array. Prior to the PNA melting array, conventional PCR was used to amplify GRA6 of T. gondii. After amplification, the PNA melting array was performed using two different PNA hybridization probes with fluorescent labels (FAM and HEX) and quenchers. Melting curves for each probe were used to determine genotypes and identify mutations. A 214-bp region of the GRA6 gene of T. gondii was successfully amplified by PCR. For all T. gondii strains (type I, II, and III) used to evaluate specificity, the correct genotypes were determined by the PNA melting array. Non-T. gondii strains, including 14 foodborne pathogens and 3 protozoan parasites, such as Giardia lamblia, Cryptosporidium parvum, and Entamoeba histolytica, showed no signal, suggesting that the assay has a high specificity. Although this is only a proof-of-concept study, the assay is promising for the fast and reliable genotyping of T. gondii from food and environmental samples.

In Vitro Anti-Helicobacter pylori Activity of Ethanol Extract of Sohamhyoongtang and Coptidis Rhizoma Total Alkaloids (소함흉탕 에탄올 추출물 및 황련 알칼로이드의 헬리코박터 파이로리에 대한 항균활성)

  • Lee, BaWool;Choi, MyungSook;Yim, DongSool;Choi, SungSook
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.168-173
    • /
    • 2014
  • The aim of this study was to evaluate the anti-helicobacter activity of the ethanol extract of Sohamhyoongtang (Coptidis Rhizoma, Pinelliae Tuber and Trichosanthis Semen) and Coptidis Rhizoma total alkaloids, which is one of the components of Sohamhyoongtang. Crude ethanol extract of Sohamhyoongtang (ESHHT) and Coptidis Rhizoma total alkaloids (CRTA) were used for this experiment. Five different types of H. pylori (including H. pylori 26695) were used as test strain. To determine anti-helicobacter activity, minimum inhibitory concentration (MIC) was determined by agar dilution method. The effect of ESHHT and CRTA on the gene expression of H. pylori was investigated by quantitative realtime-PCR (qRT-PCR). MICs of ESHHT against five H. pylori strains were $250{\sim}500{\mu}g/ml$ and MICs of CRTA against five H. pylori strains were $50{\sim}200{\mu}g/ml$. Four representative virulence genes of H. pylori, cagA, ureA, ureB and ureI were tested as target genes for qRT-PCR. According to the qRT-PCR results, both ESHHT and CRTA markedly repressed the expression of cagA gene of H. pylori 26695 (6.91 and 20 folds respecively). These results showed that the ESHHT and CRTA demonstrated antihelicobacter properties, suggesting their potential use in gastritis or duodenal ulcer.

Effective microbial molecular diagnosis of periodontitis-related pathogen Porphyromonas gingivalis from salivary samples using rgpA gene

  • Jinuk Jeong;Yunseok Oh;Junhyeon Jeon;Dong-Heon Baek;Dong Hee Kim;Kornsorn Srikulnath;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.13.1-13.8
    • /
    • 2023
  • Importance of accurate molecular diagnosis and quantification of particular disease-related pathogenic microorganisms is highlighted as an introductory step to prevent and care for diseases. In this study, we designed a primer/probe set for quantitative real-time polymerase chain reaction (qRT-PCR) targeting rgpA gene, known as the specific virulence factor of periodontitis-related pathogenic bacteria 'Porphyromonas gingivalis', and evaluated its diagnostic efficiency by detecting and quantifying relative bacterial load of P. gingivalis within saliva samples collected from clinical subjects. As a result of qRT-PCR, we confirmed that relative bacterial load of P. gingivalis was detected and quantified within all samples of positive control and periodontitis groups. On the contrary, negative results were confirmed in both negative control and healthy groups. Additionally, as a result of comparison with next-generation sequencing (NGS)-based 16S metagenome profiling data, we confirmed relative bacterial load of P. gingivalis, which was not identified on bacterial classification table created through 16S microbiome analysis, in qRT-PCR results. It showed that an approach to quantifying specific microorganisms by applying qRT-PCR method could solve microbial misclassification issues at species level of an NGS-based 16S microbiome study. In this respect, we suggest that P. gingivalis-specific primer/probe set introduced in present study has efficient applicability in various oral healthcare industries, including periodontitis-related microbial molecular diagnosis field.

Prevalence and Characterization of Virulence Genes in Escherichia coli Isolated from Diarrheic Piglets in Korea

  • Kim, Sung Jae;Jung, Woo Kyung;Hong, Joonbae;Yang, Soo-Jin;Park, Yong Ho;Park, Kun Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.271-278
    • /
    • 2020
  • Enterotoxigenic Escherichia coli is one of the major causative infectious agents of diarrhea in newborn and post-weaning pigs and leads to a large economic loss worldwide. However, there is limited information on the distribution and characterization of virulence genes in E. coli isolated from diarrheic piglets, which also applies to the current status of pig farms in Korea. To investigate the prevalence and characterization of virulence genes in E. coli related to diarrhea in piglets, the rectal swab samples of diarrheic piglets (aged 2 d to 6 w) were collected from 163 farms between 2013 and 2016. Five to 10 individual swab samples from the same farm were pooled and cultured on MacConkey agar plates, and E. coli were identified using the API 32E system. Three sets of multiplex PCRs were used to detect 13 E. coli virulence genes. As a result, a total of 172 E. coli isolates encoding one or more of the virulence genes were identified. Among them, the prevalence of individual virulence gene was as follows, (1) fimbrial adhesins (43.0%): F4 (16.9%), F5 (4.1%), F6 (1.7%), F18 (21.5%), and F41 (3.5%); (2) toxins (90.1%): LT (19.2%), STa (20.9%), STb (25.6%), Stx2e (15.1%), EAST1 (48.3%); and (3) non-fimbrial adhesin (19.6%): EAE (14.0%), AIDA-1 (11.6%) and PAA (8.7%), respectively. Taken together, various pathotypes and virotypes of E. coli were identified in diarrheic piglets. These results suggest a broad array of virulence genes is associated with coliform diarrhea in piglets in Korea.