Effect of Gamma Irradiation on the Expression of Gene Endoding Metalloprotease in Vibrio vulnificus

감마선 조사가 vibrio vulnificus의 Metalloprotease 유전자 발현에 미치는 영향

  • Jung, Jin-Woo (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Lim, Sang-Yong (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Joe, Min-Ho (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Yun, Hye-Jeong (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Hur, Jung-Mu (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Ho (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
  • 정진우 (한국원자력연구원 방사선생명공학연구센터) ;
  • 임상용 (한국원자력연구원 방사선생명공학연구센터) ;
  • 조민호 (한국원자력연구원 방사선생명공학연구센터) ;
  • 윤혜정 (한국원자력연구원 방사선생명공학연구센터) ;
  • 허정무 (한국원자력연구원 방사선생명공학연구센터) ;
  • 김동호 (한국원자력연구원 방사선생명공학연구센터)
  • Published : 2008.03.28

Abstract

To check the microbiological safety with respect to increased virulence of surviving pathogens after irradiation, in this study, the transcriptional change of vvp gene encoding metalloprotease, which is one of the typical virulence factors of Vibrio mulnificus, was monitored by real-time PCR during the course of growth cycle after reinoculation of irradiated Vibrio. When V. vulnificus was exposed to a dose of 0.5 and 1 kGy, the lag period before growth resumption of sub-cultures became longer than non-irradiated counterpart as increase of irradiation dose. In the case of non-irradiated culture, the transcription of vvp was significantly activated at 15 h after inoculation, when bacterial growth reached the stationary phase, and the highest level of pretense activity (686 U/mL) was measured at the same time. Interestingly, vvp expression of irradiated Vibrio was turned up earlier than non-irradiated Vibrio during the mid log phase of growth, whereas these rapid induction of vvp expression from irradiated cells didn't result in an increase of metalloprotease production. When Vibrio was irradiated at 0.5 and 1 kGy, the protease activities peaked at 18 h after inoculation and the levels of activities were lower 1.2- and 1.4-fold, respectively, compared to the non-irradiated counterpart. Results from this study indicate that gamma radiation is not likely to activate the virulence ability of surviving Vibrio.

방사선 조사 후에 생존한 병원성 미생물의 안정성을 연구하기 위하여 패혈증을 일으키는 Vibrio vulnificus ATCC 29307의 병원성 인자인 metalloprotease (vvp) 유전자의 발현과 효소 활성의 변화를 감마선 조사 후에 시간대별로 확인하였다. V. vulnificus는 다른 병원성 미생물들에 비하여 비교적 높은 방사선 감수성을 보였으며 방사선 조사 직후 유도기를 거친 후에 성장이 다시 시작되었다. 감마선을 조사하였을 경우 vvp 유전자의 발현은 비조사구에 비하여 $3{\sim}6$시간 정도 빨리 유도되었으나 총 metalloprotease의 활성은 감소하였다. 또한, vvp 유전자의 발현이 최대로 증가한 시점에서 metalloprotease의 활성을 비교한 결과 감마선이 조사된 균의 경우 감마선이 조사되지 않은 균에 비하여 약 $70{\sim}80%$ 수준으로 생산량이 감소하는 것을 알 수 있었다. 결론적으로, 감마선 조사 후 생존한 Vibrio vulnificus에서 병원성 인자 (vvp)의 발현 및 활성은 증가하지 않았으며 본 연구결과는 감마선 조사 식품의 미생물학적 안정성을 보여주는 기초 자료중의 하나로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Borenstein, M. and F. Kerdel. 2003. Infections with Vibrio vulnificus. Dermatol. Clin. 21: 245-248 https://doi.org/10.1016/S0733-8635(02)00088-8
  2. Cheng, J. C., C. P. Shao, and L. I. Hor. 1996. Cloning and nucleotide sequencing of the protease gene of Vibrio vulnificus. Gene. 183: 255-257 https://doi.org/10.1016/S0378-1119(96)00488-X
  3. Diehl, J. F. 1995. Microbiological safety of irradiated foods, p. 225-239. In Safety of Irradiated Foods. Marcel Dekker Inc. New York
  4. Fan, J. J., C. P. Shao, Y. C. Ho, C. K. Yu, and L. I. Hor. 2001. Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infect. Immun. 69: 5943-5948 https://doi.org/10.1128/IAI.69.9.5943-5948.2001
  5. Farkas, J. 1998. Irradiation as a method for decontaminating food. Int. J. Food Microbiol. 44: 189-204 https://doi.org/10.1016/S0168-1605(98)00132-9
  6. Farkas, J. 1989. Microbiological safety of irradiated foods. Int. J. Food Microbiol. 9: 1-15 https://doi.org/10.1016/0168-1605(89)90032-9
  7. Gulig, P. A., K. L. Bourdage, and A. M. Starks. 2005. Molecular pathogenesis of Vibrio vulnificus. J. Microbiol. 43: 118-131
  8. Gygi, S. P., Y. Rochen, B. R. Franza, and R. Aebersold. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19: 1720-1730 https://doi.org/10.1128/MCB.19.3.1720
  9. Jeong, H. S., K. C. Jeong, H. K. Choi, K. J. Park, K. H. Lee, J. H. Rhee, and S. H. Choi. 2001. Differential expression of Vibrio vulnificus elastase gene in a growth phase-dependent manner by two different types of promoters. J. Biol. Chem. 276: 13875-13880 https://doi.org/10.1074/jbc.M010567200
  10. Jeong, H. S., M. H. Lee, K. H. Lee, S. J. Park, and S. H. Choi. 2003. SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in a synergistic manner. J. Biol. Chem. 278: 45072-45082 https://doi.org/10.1074/jbc.M308184200
  11. Kawase, T., S. Miyoshi, Z. Sultan, and S. Shinoda. 2004. Regulation system for protease production in Vibrio vulnificus. FEMS Microbiol. Lett. 240: 5-59
  12. Kim, S. Y., S. E. Lee, Y. R. Kim, C. M. Kim, P. Y. Ryu, H. E. Choy, S. S. Chung, and J. H. Rhee. 2003. Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Mol. Microbiol. 48: 1647-1664 https://doi.org/10.1046/j.1365-2958.2003.03536.x
  13. Livak, K. and T. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2-^{{\Delta\Delta}Ct}$ method. Methods. 25: 402-408 https://doi.org/10.1006/meth.2001.1262
  14. Miyoshi, N., C. Shimizu, S. Miyoshi, and S. Shinoda. 1987. Purification and characterization of Vibrio vulnificus protease. Microbiol. Immunol. 31: 13-25 https://doi.org/10.1111/j.1348-0421.1987.tb03064.x
  15. Miyoshi, S., H. Nakazawa, K. Kawata, K. Tomochika, K. Tobe, and S. Shinoda. 1998. Characterization of the hemorrhagic reaction caused by Vibrio vulnificus metalloprotease, a member of the thermolysin family. Infect. Immun. 66: 4851-4855
  16. Okujo, N., T. Akiyama, S. Miyoshi, S. Shinoda, and S. Yamamoto. 1996. Involvement of vulnibactin and extracellular protease in utilization of transferrin- and lactoferrinbound iron by Vibrio vulnificus. Microbiol. Immunol. 40: 595-598 https://doi.org/10.1111/j.1348-0421.1996.tb01114.x
  17. Olson, D. G. 1998. Irradiation of food: scientific status summary. J. Food Tech. 52: 56-62
  18. Osterholm, M. T. and A. P. Norgan. 2004. The role of irradiation in food safety. N. Engl. J. Med. 350: 1898-1901 https://doi.org/10.1056/NEJMsb032657
  19. Park, K. J., M. J. Kang, S. H. Kim, H. J. Lee, J. K. Lim, S. H. Choi, S. J. Park, and K. H. Lee. 2004. Isolation and characterization of rpoS from a pathogenic bacterium, Vibrio vulnificus: role of sigma S in survival of exponential-phase cells under oxidative stress. J. Bacteriol. 186: 3304-3312 https://doi.org/10.1128/JB.186.11.3304-3312.2004
  20. Parnes, R. B. and A. H. Lichtenstein. 2004. Food irradiation: a safe and useful technology. Nutr. Clin. Care. 7: 149-155
  21. Scholes, G., J. F. Ward, and J. Weiss. 1960. Mechanism of the radiation-induced degradation of nucleic acid. J. Mol. Biol. 2: 379-391 https://doi.org/10.1016/S0022-2836(60)80049-6
  22. Shao, C. P. and L. I. Hor. 2000. Metalloprotease is not essential for Vibrio vulnificus in mice. Infect. Immun. 68: 3569-3573 https://doi.org/10.1128/IAI.68.6.3569-3573.2000
  23. Shao, C. P. and L. I. Hor. 2001. Regulation of metalloprotease gene expression in Vibrio vulnificus by a Vibrio harveyi LuxR homologue. J. Bacteriol. 183: 1369-1375 https://doi.org/10.1128/JB.183.4.1369-1375.2001
  24. Symons, M. C. R. 1994. Direct and indirect damage to DNA by ionizing radiation. Radiat. Phys. Chem. 43: 403-405 https://doi.org/10.1016/0969-806X(94)90035-3
  25. Thayer, D. W. 2004. Irradiation of food - Helping to ensure food safety. N. Engl. J. Med. 350: 1811-1812 https://doi.org/10.1056/NEJMp048014
  26. Von Sonntag, C. 1987. Targets in radiation biology, p. 94- 109. In The chemical basis of radiation biology. Taylor and Francis Inc. New York
  27. Watanabe, H., S. Miyoshi, T. Kawase, K. Tomochika, and S. Shinoda. 2004. High growing ability of Vibrio vulnificus biotype 1 is essential for production of a toxic metalloprotease causing systemic diseases in humans. Microbiol. Pathog. 36: 117-123 https://doi.org/10.1016/j.micpath.2003.10.001
  28. Wilhelm, J. and A. Pingoud. 2003. Real-time polymerase chain reaction. Chembiochem. 4: 1120-1128 https://doi.org/10.1002/cbic.200300662