• Title/Summary/Keyword: Virtual navigation guidance

Search Result 11, Processing Time 0.03 seconds

Research on Cognitive Effects and Responsiveness of Smartphone-based Augmented Reality Navigation (스마트폰 증강현실 내비게이션의 인지능력과 호응도에 관한 연구)

  • Sohn, Min Gook;Lee, Seung Tae;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.272-280
    • /
    • 2014
  • Most of the car navigation systems pzrovide 2D or 3D virtual map-based driving guidance. One of the important issues is how to reduce cognitive burden to the driver who should interpret the abstracted information to real world driving information. Recently, an augmented reality (AR)-based navigation is considered as a new way to reduce cognitive workload by superimposing guidance information into the real world scene captured by the camera. In particular, head-up display (HUD) is popular to implement AR navigation. However, HUD is too expensive to be set up in most cars so that the HUD-based AR navigation is currently unrealistic for navigational assistance. Meanwhile, smartphones with advanced computing capability and various sensors are popularized and also provide navigational assistance. This paper presents a research on cognitive effect and responsiveness of an AR navigation by a comparative study with a conventional virtual map-based navigation on the same smartphone. This paper experimented both quantitative and qualitative studies to compare cognitive workload and responsiveness, respectively. The number of eye gazing at the navigation system is used to measure the cognitive effect. In addition, questionnaires are used for qualitative analysis of the responsiveness.

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Multi-level DVS Guidance and Output-feedback Path-following Control for Marine Surface Vehicles

  • Deng, Ying-Jie;Im, Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.256-257
    • /
    • 2018
  • This paper deals with the path-following control for marine surface vehicles with underactuated characteristics. In consideration of practical limitations of actuators, an improved DVS(dynamic virtual ship) guidance algorithm is proposed with the multi-level DVS optionally selected to be tracked. To address the output-feedback control issue, an adaptive FLS(fuzzy logical systems) is devised to online approximate the kinematic states. Based on that observing framework, the path-following control law is thereafter derived. Simulations testify effectiveness of the proposed scheme

  • PDF

Line Tracking Method of AGV using Sensor Fusion (센서융합을 이용한 AGV의 라인 트레킹 방법)

  • Jung, Kyung-Hoon;Kim, Jung-Min;Park, Jung-Je;Kim, Sung-Shin;Bae, Sun-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • This paper present to study the guidance system as localization technique using sensor fusion and line tracking technique using virtual line for AGV(autonomous guided vehicle). An existing AGV could drive on decided line only. And representative guidance systems of such guidance system are magnet-gyro guidance and wired guidance. However, those have had the high cost of installation and maintenance, and the difficulty of system change according to variation of working environment. To solve such problems, we make the localization system which is fused with a laser navigation and gyro, encoder. The system is robust against noise, and flexible according to working environment through sensor fusion. For line tracking of laser navigation without wire guidance, we set the virtual line in program, and design the driving controller based on difference of angle and distance between AGV's position and decided virtual line. To experiment, we use the AGV which is made by ourselves, and experiment the line tracking repeatedly on same experimental environment. In result, maximum distance error between decided virtual line and AGV's position was less than 49.93mm, and we verified that the proposed system is efficient for line tracking of actual AGV.

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF

Path Tracking for AGV using Laser guidance system (레이저 유도 시스템을 이용한 AGV의 경로추적)

  • Park, Jung-Je;Kim, Jung-Min;Do, Joo-Cheol;Kim, Sung-Shin;Bae, Sun-Il
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 2010
  • This paper presents to study the path tracking method of AGV(autonomous guided vehicle) which has a laser guidance system. An existing automatic guided vehicles(AGVs) which were able to drive on wired line only had a automatic guidance system. However, the automatic guidance systems that those used had the high cost of installation and maintenance, and the difficulty of system change according to variation of working environment. To solve such problems, we make the laser guidance system which is consisted of a laser navigation and gyro, encoder. That is robust against noise, and flexible according to working environment through sensor fusion. The laser guidance system can do a perfect autonomous driving. However, the commercialization of perfect autonomous driving system is difficult, because the perfect autonomous driving system must recognize the whole environment of working space. Hence, this paper studied the path tracking of AGV using laser guidance system without wired line. The path tracking method is consisted of virtual path generation method and driving control method. To experiment, we use the fork-type AGV which is made by ourselves, and do a path tracking experiments repeatedly on same experimental environment. In result, we verified that proposed system is efficient and stable for actual fork-type AGV.

Data Fusion and Pursuit-Evasion Simulations for Position Evaluation of Tactical Objects (전술객체 위치 모의를 위한 데이터 융합 및 추적 회피 시뮬레이션)

  • Jin, Seung-Ri;Kim, Seok-Kwon;Son, Jae-Won;Park, Dong-Jo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2010
  • The aim of the study on the tactical object representation techniques in synthetic environment is on acquiring fundamental techniques for detection and tracking of tactical objects, and evaluating the strategic situation in the virtual ground. In order to acquire these techniques, there need the tactical objects' position tracking and evaluation, and an inter-sharing technique between tactical models. In this paper, we study the algorithms on the sensor data fusion and coordinate conversion, proportional navigation guidance(PNG), and pursuit-evasion technique for engineering and higher level models. Additionally, we simulate the position evaluation of tractical objects using the pursuit and evasion maneuvers between a submarine and a torpedo.

A Study on the Interactive Narrative - Focusing on the analysis of VR animation <Wolves in the Walls> (인터랙티브 내러티브에 관한 연구 - VR 애니메이션 <Wolves in the Walls>의 분석을 중심으로)

  • Zhuang Sheng
    • Trans-
    • /
    • v.15
    • /
    • pp.25-56
    • /
    • 2023
  • VR is a dynamic image simulation technology with very high information density. Among them, spatial depth, temporality, and realism bring an unprecedented sense of immersion to the experience. However, due to its high information density, the information contained in it is very easy to be manipulated, creating an illusion of objectivity. Users need guidance to help them interpret the high density of dynamic image information. Just like setting up navigation interfaces and interactivity in games, interactivity in virtual reality is a way to interpret virtual content. At present, domestic research on VR content is mainly focused on technology exploration and visual aesthetic experience. However, there is still a lack of research on interactive storytelling design, which is an important part of VR content creation. In order to explore a better interactive storytelling model in virtual reality content, this paper analyzes the interactive storytelling features of the VR animated version of <Wolves in the walls> through the methods of literature review and case study. We find that the following rules can be followed when creating VR content: 1. the VR environment should fully utilize the advantages of free movement for users, and users should not be viewed as mere observers. The user's sense of presence should be fully considered when designing interaction modules. Break down the "fourth wall" to encourage audience interaction in the virtual reality environment, and make the hot media of VR "cool". 2.Provide developer-driven narrative in the early stages of the work so that users are not confused about the ambiguous world situation when they first enter a virtual environment with a high degree of freedom. 1.Unlike some games that guide users through text, you can guide them through a more natural interactive approach that adds natural dialog between the user and story characters (NPC). Also, since gaze guidance is an important part of story progression, you should set up spatial scene user gaze guidance elements within it. For example, you can provide eye-following cues, motion cues, language cues, and more. By analyzing the interactive storytelling features and innovations of the VR animation <Wolves in the walls>, I hope to summarize the main elements of interactive storytelling from its content. Based on this, I hope to explore how to better showcase interactive storytelling in virtual reality content and provide thoughts on future VR content creation.

Flight Test of Helicopter Landing System Using Real-time DGPS (실시간 DGPS를 이용한 헬리콥터 착륙 시스템 개발)

  • Park, Sung-Min;Kim, Jung-Han;Whang, Duk-Ho;Jang, Jae-Gyu;Kee, Chang-Don;Park, Hyoung-Taek;Park, Hong-Man;Lee, Chang-Hyo
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.2
    • /
    • pp.108-119
    • /
    • 1999
  • In recent, there has been remarkable progress in the field of GPS applications. In a few years, an appreciable number of aircraft will adopt GPS as a landing guidance system because GPS is more economic, more reliable and more accurate than any other aviation systems. In this respect, we have performed several helicopter landing flight tests based on the real-time DGPS system made in SNUGL (Seoul National University GPS Laboratory). From the experimental results, we found several problems Which should be fixed to adopt DGPS as a aircraft landing guidance system. In this paper, we will introduce the problems found in tests and also suggest modifications to solve the problems. Our modifications can be classified into three parts. The first is about the attitude determination with single GPS antenna. The second deals with the cockpit display module. The display was devised to integrate the Instrument Landing System(ILS) with tunnel-the-sky using virtual reality. With the display, pilot can achieve more safe landings. The last part is the digital map. We inserted digital map into our system and put direction indicator on the map using position information from GPS. It is very useful for pilot to find airports even in bad weather. Using the newly designed DGPS landing system, we conducted flight test at Kimhae International Airport, Pusan, Korea. It was successful! Our system can also satisfy Category-I criterion for aircraft landing approach and determine attitude angle with a high level of reliability. It is supported by video materials.

  • PDF

Road Sign Function Diversification Strategy to Respond to Changes in the Future Traffic Environment : Focusing on Citizens' Usability of Road Signs (미래 교통환경 변화 대응을 위한 도로표지 기능 다변화 전략: 시민의 도로표지 활용성을 중심으로)

  • Choi, Woo-Chul;Cheong, Kyu-Soo;Na, Joon-Yeop
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.30-41
    • /
    • 2022
  • With the advent of autonomous driving, personal mobility, drones, and smart roads, it is necessary to respond to changes in the road traffic environment in the road guidance system. However, the use of road signs to guide the road is decreasing compared to the past due to the advent of devices such as navigation and smartphones. Therefore, in this study, a large-scale survey was conducted to derive road sign issues and usage plans to respond to future changes. Based on this, this study presented a strategy to diversify road sign functions by analyzing the factors affecting the use of road signs by citizens. As a result, first, it is necessary to provide real-time variable road guidance information that reflects user needs such as traffic, weather, and local events. Second, it is necessary to informatize digital road signs such as reflecting maps with precision. Third, it is necessary to demonstrate road guidance in a virtual environment that reflects various future mobility and road environments.