• Title/Summary/Keyword: Virtual controller

Search Result 350, Processing Time 0.029 seconds

Kinematics and Dynamics Analysis of Precision stage (정밀 스테이지의 기구 동역학 해석)

  • Ju, Jae-Hwan;Yim, Hong-Jae;Jang, Si-Youl;Jung, Jae-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.677-682
    • /
    • 2007
  • Recently, a precision stage is widely used in the fields of the nano technology. In this paper, the precision stage which consists of linear motor, vision system, light source system and controller, is designed and developed for nano imprint machine. Stiffness design considering resonance frequency is important for the precision stage. A virtual machine simulation is useful for machine development the early design stage. Kinematic and dynamic simulations of XYZ stage are performed. To consider the resonance frequency and vibration effects flexible multibody dynamics are utilized with FE modeling of the structural components.

  • PDF

Internet-Based Remote Control System Using Power Line Communication (전력선 통신을 이용한 인터넷 기반 원격 제어 시스템)

  • 차주헌;전희연;김재덕;김근영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.523-528
    • /
    • 2001
  • In this paper, we describe the internet-based remote home automation system that con control and manage home appliances or digital devices bi-directionally through Internet. The platform-independency of VRML and Java applet enables users to access their home appliances and to check current state of them in t he virtual reality environment. The main focus is on three aspects. One is on the virtual reality technology to support the user interface efficiently by using 3D GUI in web-browser. Another is on the system architecture that consists of Home server and its manager server called Gate server in this paper. These servers have been implemented by Java RMI which is the basic single programming interface for distribution of objects and services using Java technology. The third, remote PLC controller and each digital devices are composed of home networking by PLC using CEBus protocol.

  • PDF

The Novel Sliding Mode Controller for Discrete-time System with Multi-Input (다중입력 이산치계통에 대한 새로운 슬라이딩 모드 제어기의 설계)

  • Park, Seung-Kyu;Jin, Mi-Jung;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.906-908
    • /
    • 1999
  • In this paper, new sliding mode surfaces are proposed by defining novel virtual states. These sliding surfaces have nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have m-th higher order than those of the original system where m is the number of inputs. The reaching phase is removed by setting the initial virtual states which makes the initial switching functions equal to zero.

  • PDF

Design and Implementation of Tele-operation system based on the Haptic Interface

  • Lee, Jong-Bae;Lim, Joon-Hong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.161-165
    • /
    • 2003
  • In this paper, we investigate the issues on the design and implementation of tele-operation system based on the haptic interface. Here, the 3-DOF haptic device and the X-Y-Z stage are employed as master controller and slave system respectively. For this master-slave system, the force feedback algorithm, the modeling of virtual environments and the control method of X-Y-Z stage are presented. In this paper, internet network is used for data communication between master and slave. We construct virtual environment of the real convex surface from the force-feedback in controlling the X-Y-Z stage and measuring the force applied by the 3-DOF haptic device.

Force-Display System using Wire-Tension (실의장력을 이용한 역감장치)

  • Kang, Won-Chan;Kim, Young-Dong;Shin, Suck-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.103-107
    • /
    • 2001
  • In this paper, we have developed a new Force-Display system using wire-tension method. The proposed system is based on the HIR Lab Haptic Rendering library, which calculates the real position and renders the reflecting force data to device rapidly. The system is composed of device based tendon-driven method, controller and Haptic rendering library. The developed system will be used on constructing the dynamical virtual environment. To show the efficiency of our system, we designed simulation program which can display the moving force (attaching, grabbing, rotating) on two virtual point. As the result of the experiment, our proposed system shows much higher resolution and stability than any others.

  • PDF

The Novel Sliding Mode Controller for Linear System with Multi-Input (다입력계통에 대한 새로운 슬라이딩 모드 제어기)

  • Park, Seung-Kyu;Ahn, Ho-Kyun;Jin, Mi-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.440-442
    • /
    • 1998
  • In this paper, new sliding mode surfaces are proposed by defining novel virtual states. These sliding surfaces have nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have m-th higher order than those of the original system where m is the number of inputs. The reaching Phase is removed by setting the initial virtual states which makes the initial switching functions equal to zero.

  • PDF

Robust Controller Design with Novel Sliding Mode Surface-Linear Optimal Control Case (새로운 스위칭 평면을 이용한 강인한 최적 제어기의 설계)

  • Park, Seung-Kyu;Ahn, Ho-Kyun;Kim, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.446-448
    • /
    • 1998
  • In this paper, a novel sliding surface is proposed by introducing a virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have one higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial switching function equal to zero.

  • PDF

A design of wearable controller for VR(Virtual Reality) games (가상현실 게임을 위한 웨어러블 컨트롤러)

  • Hwang, Ji Hwan;Shin, Seung Ok;Tae, Jun Hyeok;Jeon, Gyeong-Gu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1092-1094
    • /
    • 2017
  • 오큘러스의 대중화 선언 이후로 일반인들에게도 가상현실(VR, Virtual Reality)에 대한 많은 관심을 불러일으켰다. 국내에서도 VR산업에 많은 투자를 하고 있으며, 현실감이 부족한 점을 보안하기 위해 웨어러블을 적용한 실감현 콘텐츠를 제작하고자 하였다. 사람의 움직임을 적외선 센서와 자이로 센서로 인식하고 측정된 센서값을 아두이노와 라즈베리파이를 이용하여 디바이스 입력신호로 처리값을 블루투스 통신으로 디바이스에 전송하여 작동한다. 기존에 없던 웨어러블(wearable) 컨트롤러로 현실감 있는 리얼한 게임을 제공한다.

Novel Model Following Sliding Mode Controller with Virtual State (새로운 모델 추종 슬라이딩 모드 제어기)

  • Park, Seung-Kyu;Ok, In-Jo;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2669-2671
    • /
    • 2000
  • In this paper, a new model error following sliding mode control is considered with a novel sliding surface for the error. This novel sliding surface has nominal dynamics of an original state of the error system and makes it possible that the Sliding Mode Control(SMC) technique for the error of the model following is used with the various types of controllers. Its design is based on the augmented system whose dynamics have a higher order than that of the original error system. The reaching phase is removed by using an initial virtual state which makes the initial error state sliding function equal to zero.

  • PDF

Bio-inspired robot swarm control algorithm for dynamic environment monitoring

  • Kim, Kyukwang;Kim, Hyeongkeun;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • To monitor the environment and determine the source of a pollutant gradient using a multiple robot swarm, we propose a hybrid algorithm that combines two bio-inspired algorithms mimicking chemotaxis and pheromones of bacteria. The algorithm is implemented in virtual robot agents in a simulator to evaluate their feasibility and efficiency in gradient maps with different sizes. Simulation results show that the chemotaxis controller guided robot agents to the locations with higher pollutant concentrations, while the pheromone marked in a virtual field increased the efficiency of the search by reducing the visiting redundancy. The number of steps required to reach the target point did not increase proportionally as the map size increased, but were less than those in the linear whole-map search method. Furthermore, the robot agents could function with simple sensor composition, minimum information about the map, and low calculation capacity.