• Title/Summary/Keyword: Virion

Search Result 84, Processing Time 0.024 seconds

A Study on DNA Sequences and Mutation of Integrase Region of Korean-type Bovine Leukemia Virus (BLV) pol Gene

  • Kwon, Oh-Sik;Kang, Jung-Soon;Park, Hyun-Jin;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.10 no.1
    • /
    • pp.55-63
    • /
    • 2004
  • Bovine leukemia virus (BLV) is a causative agent for lymphoma disease in cattle including cows worldwide. BLV shares similar virion structure and characteristics with other retroviruses. The pol gene of the BLV genome produced reverse transcriptase (RT) and integrase (IN) for important roles for BLV genome integration into host cell chromosomes that is known to be coded in the 3' side of the BLV pol gene (one third portion). In this study, we have sequenced 978 bp in the 3' side of the BLV pol gene from BLV 10C3 in order to determine the BLV IN region of it. And we compared it to the nucleotide sequences of an Australian BLV isolate. As a result, nucleotide sequences of the IN region of the Korean-type BLV pol gene were mutated at a rate of 3.7%. We can confirm that the typical mutations are such as Arg (AGG) $\rightarrow$ Lys (AAG), Thr (ACG) $\rightarrow$ Met (ATG), Ile (ATT) $\rightarrow$ Val (GTT), Asn (ACC) $\rightarrow$ His (CAC), Phe (TTT) $\rightarrow$ Leu (TTG) and Asn (ACC) $\rightarrow$ Asp (GAC). From the analysis of the sequencing data, we were able to determine the zinc-finger-like "HHCC" motif in the amino terminus of BLV IN, that was H-$X_3$-H-$X_{25}-C-X_2$-C. It was also found the DD35E motif in the IN catalytic domain as D-$X_{56}$-D-$X_{35}$-E. It fits very well to the consensus sequences of retroviral IN as well as HHCC motif.

  • PDF

Immune Responses against Marek's Disease Virus Infection (마렉병 바이러스 감염에 대한 면역 반응)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.225-240
    • /
    • 2008
  • Marek's disease virus(MDV) is a highly cell-associated, lymphotropic $\alpha$-herpesvirus that causes paralysis and neoplastic disease in chickens. The disease has been controlled by vaccination which was provided the first evidence for a malignant cancer being controlled by an antiviral vaccine. Marek's disease pathogenesis is complex, involving cytolytic and latent infection of lymphoid cells and oncogenic transformation of $CD4^+$ T cells in susceptible chickens. MDV targets a number of different cell types during its life cycle. Lymphocytes play an essential role, although within them virus production is restricted and only virion are produced. Innate and adaptive immune responses develop in response to infection, but infection of lymphocytes results in immunosuppressive effects. Hence in MDV-infected birds, MDV makes its host more vulnerable to tumour development as well as to other pathogens. All chickens are susceptible to MDV infection, and vaccination is essential to protect the susceptible host from developing clinical disease. Nevertheless, MDV infects and replicates in vaccinated chickens, with the challenge virus being shed from the feather-follicle epithelium. The outcome of infection with MDV depends on a complex interplay of factors involving the MDV pathotype and the host genotype. Host factors that influence the course of MD are predominantly the responses of the innate and adaptive immune systems, and these are modulated by: age at infection and maturity of the immune system; vaccination status; the sex of the host; and various physiological factors.

Expression Profiles and Pathway Analysis in HEK 293 T Cells Overexpressing HIV-1 Tat and Nucleocapsid Using cDNA Microarray

  • Park, Seong-Eun;Lee, Min-Joo;Yang, Moon-Hee;Ahn, Ka-Young;Jang, Soo-In;Suh, Young-Ju;Myung, Hee-Joon;You, Ji-Chang;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.154-161
    • /
    • 2007
  • Human immunodeficiency virus type 1 (HIV-1) infections are responsible for a substantial number of deaths annually and represent a significant threat to public health. According to the latest study, the Tat (Transactivator of transcription) protein is essential in transcription and replication of viral genes, and is among the early expression genes involved in the life cycle of HIV. The virion NC (nucleocapsid) plays an important role in early mRNA expression and contributes to the rapid viral replication that occurs during HIV-1 infection. Therefore, we attempted to elucidate the relationship between the Tat protein and nucleocapsid protein. In a comparison of two independently prepared and hybridized samples, flag NC overexpressed HEK 293T cells and pTat overexpressed HEK 293T cells, and hybridization showed the differences in expression in each case. Among the microarray results confirmed with real-time reverse transcriptase assay, twelve genes were identified to be involved according to their gene expression profiles. Of approximately 8,208 human genes that were analyzed, we monitored candidate genes that might have been related to NC and Tat genes from gene expression profiles. Additionally, the pathways could be viewed and analyzed through the use of Pathway Studio software. The pathways from the gene list were built and paths were found among the molecules/cell objects/processes by the curation method.

In situ Hybricization of White Spot Disease Virus Experimentally Infected Penaeid Shrimp

  • Lee, Won-Woo;Lee, Beom-Jue;Lee, Yeon-Hee;Lee, Yong-Soon;Park, Jae-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Abstract White spot disease (WSD), resulting in more than 90% mortality of aquacultured penaeid shrimp, has been reported off the southern and western coasts of Korea since 1993. The pafuogen of WSD has been identified as being a virion wifu an envelope around a central nucleocapsid, and with an average size of 167 nm in diameter and 375 nm in length. In the present study, an in situ hybridization technique was developed as a rapid. sensitive, and specific diagnostic assay for the WSD viros infection in shrimp. Furthermore. the pathological changes ofWSD, in shrimp experimentally infected with WSD viroses. were investigated. Using a biotinylated 643 bp probe obtained from a peR using primers specific to the rod-shaped virus of Penaeus japonicus (RV-PJ), positive signals were detected in both naturally and experimentally infected shrimps. The in situ hybridization revealed positive reactions in the nuclei of the stromal matrix cells in the lymphoid organ, epithelia of the gills, foregut. epidermis, and hematopoietic cells of the interstitial tissues, suggesting the presence of WSD virus. Tills result indicates that the in situ hybridization method can be useful for a rapid and sensitive detection of WSD viruses in shrimp.shrimp.

  • PDF

Biological and Physicochemical Properties of Porcine Epidemic Diarrhea Virus Chinju99 Strain Isolated in Korea (국내 분리 돼지 유행성설사 바이러스 Chinju99주의 생물학적 및 물리화학적 성상)

  • Lee, Hee-Kyung;Yeo, Sang-Geon
    • Journal of Veterinary Clinics
    • /
    • v.20 no.2
    • /
    • pp.150-154
    • /
    • 2003
  • A disease with severe diarrhea occurred in a herd of one thousand, 1-week-old piglets in Chinju, Korea, and was diagnosed as porcine epidemic diarrhea by the detection of N gene of porcine epidemic diarrhea virus (PEDV) from small intestines. A PEDV, named as Chinju99, was also isolated from the intestines after two blind-passages in Vero cells supplemented with trypsin (10 ug/ml). and the biological and physicochemical properties of the isolate were characterized. The virion was roughly spherical in shape and had spike peplomers on its outer surface. The virus exhibited cytopathic effects such as rounding degeneration at initiation of infection and syncytia formation later in Vero cells. The virus was labile to 20% ether and 5% chloroform but stable in acid with pH 4-7 at $4^{\circ}C$. The infectivity of the virus was maintained at $50^{\circ}C$ for 180 min, and the buoyant density of the virus in sucrose was 1.180 g/ml. All biological and physicochemical properties of the virus were typical features of coronaviruses.

Infection and Pathogenesis Mechanisms of Marek's Disease Virus (마렉병 바이러스 감염과 병원성 발현 기전)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.1
    • /
    • pp.39-55
    • /
    • 2008
  • Like the other herpesviruses, the virion of MDV consists of an envelope, which surrounds an amorphous tegument. Within the tegument, and icosahedral capsid encloses a linear double-stranded DNA core. Although the genome structure of MDV indicates that it is an ${\alpha}-herpesvirus$ like herpes simplex and varicella-zoster viruses, biological properties indicate MDV is more akin to the ${\gamma}-herpesvirus$ group, which includes Epstein-Barr and Kaposi's sarcoma herpesviruses. These herpesviruses replicate lytically in lymphocytes, epithelial and fibroblastic cells, and persist in lymphoblastoid cells. MDV has a complex life cycle and uses two means of replication, productive and non-productive, to exist and propagate. The method of reproduction changes according to a defined pattern depending on changes in virus-cell interactions at different stages of the disease, and in different tissues. Productive (lytic) interactions involve active invasion and take-over of the host cell, resulting in the production of infectious progeny virions. However, some herpesviruses, including MDV, can also establish a non-productive (abortive) infection in certain cell types, resulting in production of cell-associated progeny virus. Non-productive interactions represent persistent infection, in which the viral genome is present but gene expression is limited, there is no structural or regulatory gene translation, no replication, no release of progeny virions and no cell death. Reactivation of the virus is rare, and usually the infectious virus can be re-isolated only after cultivation in vitro. MDV establishes latency in lymphoid cells, some of which are subsequently transformed. In this review article, recent knowledges of the pathogenesis mechanisms followed by MDV infection to sensitive cells and chickens are discussed precisely.

Effect of Iron(II)-ascorbate Complex on Protein and DNA of Phages (파아지 단백질 및 DNA에 대한 2가철-아스코르빈산착체의 영향)

  • Lho, Il-Hwan;Murata, Akira
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.46-51
    • /
    • 1993
  • The inactivating effect of iron(II)-ascorbate complex (Fe-Asc) on various phages was previously reported. This paper describes the molecular target in the phage virion attacked by Fe-Asc. The effect of Fe-Asc on protein was investigated with bovine serum albumin and the structural protein of phage J1. There were no differences in the SDS-polyacrylamide gel electrophoresis (patterns of these two proteins when either they were treated) with Fe-Asc or not. Also, there were no changes in the amino acid composition and ultraviolet spectrum of the proteins. The effects of Fe-Asc on DNA was investigated with pUC18 DNA, M13mpB DNA and ${\lambda}$ DNA as well as DNA from phage J1. Fe-Asc caused initially nicking of the subsequently form of pUC18 DNA to yield the open circular form and then subsequently the linear form. Strand breaks were also confirmed with M13mp8 DNA and ${\lambda}$ DNA as well as J1 DNA. The results indicate that the strand breaks in phage DNA could be responsible for the inactivation of phages by Fe-Asc.

  • PDF

Infection Symptom and Electron Microscopic Visualization of Nuclear Polyhedrosis Virus (핵다면체 바이러스의 감염증상과 전자현미경적 연구)

  • Lee, Keun-Kwang;Kim, Young-Gill
    • Journal of fish pathology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 1994
  • Nuclear polyhedrosis virus was successfully infected the continuous Sf cell line. At 12hrs post-infectio(P.I), the cell lost the motility and the nuclei of the cells were hypertrophied. At 24hrs P.I, the cells were somewhat abnormal form and PIB formation was observed. At 48hrs, the PIBs formed in all cells. PIBs in the nuclei were released in the culture media at 72hrs P.I. By the observation of NPV morphogenesis by electron microscopy at 13hrs P. I, the virogenic stroma formed in the nucleus, and nucleocapsids formed. At 48hrs P.I, many nucleocapsids were bundled and then occluded in PIB, and PIBs were matured. PIB shapes were mostly tetragonal and a polyhedron was about $3{\sim}10{\mu}m$ in size. Virions were rod shape. nucleocapsids ranging in size $30{\sim}40{\times}300{\sim}400nm$.

  • PDF

Isolation and Characterization of Avian Reoviruses from Chickens with Arthritis or Stunted Growth (관절염과 발육부전증을 보이는 닭으로부터 Avian Reovirus의 분리와 성상조사)

  • 김선중;서익수
    • Korean Journal of Poultry Science
    • /
    • v.12 no.2
    • /
    • pp.135-143
    • /
    • 1985
  • A total of eight strains of avian reoviruses were isolated from chickens with arthritis or stunted growth. The isolations were made from broilers or broiler breeders under 12 weeks of age. The viruses had a typical morphology of reoviruses with double capsid layers and 81nm of diameter. In agar gel precipitation tests, the isolates reacted with antisera prepared against S-1133 or R-1 strains of avian reoviruses and cross reacted with S-1133 antigen. They did not agglutinated RBC's from day-old chicks, adult chickens, guinea pigs, and horses. The isolates showed strong resistance against the treatments of chloroform, IUdR, and heat, When infectivities of the viruses were titrated in cell cultures of chicken embryo fibroblast, chicken embryo liver, and Vero cells, similar end points reached four to five days after inoculation, regardless of tell types and virus inoculation time, either inoculated simultaneously at the time of cell seeding or on confluency. Mean times of mortality of chicken embryos inoculated with the isolates via the chorioallantoic membrane ranged from 54 to 59 hours and that of S-1133 strain was 73 hours.

  • PDF

Monoclonal antibodies against structural proteins of bovine viral diarrhea virus (소 설사병 바이러스 구조단백에 대한 단크론항체 성상에 대한 연구)

  • Kweon, Chang-hee;Zee, Yuan Chun;Woo, Hee-jong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 1992
  • Monoclonal antibodies against structural proteins of bovine viral diarrhea virus(BVDV) were derived by classical hybridoma techniques. These antibodies were characterized by serum neutralization, immunoblotting and immunoprecipitation. The neutralizing monoclonal antibody reacted with the 56kd to 54kd(M.W.) viral protein in western blotting and immunoprecipitation analysis. Although there was no neutralizing activity, another monoclanal antibody reacted with the 45kd protein by immunoprecipitation and with both the 45kd and 36kd proteins in immunoblotting analysis. respectively. Densitometer scanning of purified BVDV and the immunopreipitation of whole virus particles with neutralizing monoclonal antibody revealed the presence of more than twelve viral polypeptides. Although no possible precursor form of protein was identified with the neutralizing monoclonal antibody. the presence of intact virion was detected in the infected cell supernatant immediatelty after pulse labeling, indicating rapid translational processing as well as packaging of the virus. The partial peptide mapping of 45kd and 36kd proteins with Staphylococcus aureus V 8 protease showed that these two proteins are related.

  • PDF