• Title/Summary/Keyword: Vigilance Parameter

Search Result 18, Processing Time 0.029 seconds

Estimation of pattern classification vigilance parameter using neural network

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.95-97
    • /
    • 2004
  • This paper estimates Adaptive Resonance Theory 1(ART1) as a vigilance parameter of pattern clustering algorithm. Inherent characteristics of the model are analyzed. In particular the vigilance parameter ${\rho}$ and its role in classification of patterns is examined. Our estimates show that the vigilance parameter as designed originally does not necessarily increase the number of categories with its value but can decrease also. This is against the claim of solving the stability-plasticity dilemma. However, we have proposed a modified vigilance parameter estimate criterion which takes into account the problem of subset and superset patterns and stably categorizes arbitrarily many input patterns in one list presentation when the vigilance parameter is closer to one.

  • PDF

The pattern cognition and classification used neural network

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2525-2527
    • /
    • 2004
  • This paper classify using Adaptive Resonance Theory 1(ART1) as a vigilance parameter of pattern clustering algorithm. Inherent characteristics of the model are analyzed. In particular the vigilance parameter $\rho$ and its role in classification of patterns is examined. Our estimates show that the vigilance parameter as designed originally does not necessarily increase the number of categories with its value but can decrease also. This is against the claim of solving the stability-plasticity dilemma. However, we have proposed a modified vigilance parameter setting criterion which takes into account the problem of subset and superset patterns and stably categorizes arbitrarily many input patterns in one list presentation when the vigilance parameter is closer to one. And this paper goal is the input pattern cognition and classification using neural network.

  • PDF

Radar Image Classification based on ART2 Network using Adaptive Vigilance Parameter (Adaptive vigilance parameter를 이용한 ART2에 기반한 레이더 영상에서의 물체 추출)

  • Park, Eun-Gyeong;Kim, Do-Hyeon;Choi, Sun-Ah;Cha, Eui-Young
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.763-766
    • /
    • 2002
  • 레이더 영상에서의 물체 위치는 극좌표계로 주어지기 때문에 직각좌표계로 표현되는 일반적인 물체 추적에서의 클러스터링을 통한 물체 추출 방법은 비효율적이다. 본 논문에서는 이러한 레이더 영상의 특성을 고려하여 개선된 ART2클러스터링 기법을 이용하는 방법을 제안하였다. 이진화와 labeling을 통해 추적하고자 하는 물체 외의 물체나 잡영을 제거한 영상에서의 adaptive vigilance parameter를 이용한 ART2 클러스터링 기법의 적용은 추적하고자 하는 물체를 추출함에 있어 우수한 실험 결과를 보였다.

  • PDF

Colored Object Extraction using Fuzzy Neural Network (퍼지 신경회로망을 이용한 칼라 물체 추출)

  • Kim, Yong-Su;Jeong, Seung-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.197-202
    • /
    • 2006
  • 본 논문에서는 퍼지 신경회로망을 사용하여 영상에서 물체를 배경으로부터 추출해내는 방법을 제시하였다. 퍼지 신경회로망의 vigilance parameter를 조정하여 영상을 2개의 클래스로 분류하고, 물체 영역과 배경영역의 Cb와 Cr의 대표값을 추출하였다. 제안한 방법을 사용하여 물체색상의 위치 및 크기와 밝기에 상관없이 물체영역을 추출하였다.

  • PDF

Incremental Clustering Algorithm by Modulating Vigilance Parameter Dynamically (경계변수 값의 동적인 변경을 이용한 점층적 클러스터링 알고리즘)

  • 신광철;한상용
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1072-1079
    • /
    • 2003
  • This study is purported for suggesting a new clustering algorithm that enables incremental categorization of numerous documents. The suggested algorithm adopts the natures of the spherical k-means algorithm, which clusters a mass amount of high-dimensional documents, and the fuzzy ART(adaptive resonance theory) neural network, which performs clustering incrementally. In short, the suggested algorithm is a combination of the spherical k-means vector space model and concept vector and fuzzy ART vigilance parameter. The new algorithm not only supports incremental clustering and automatically sets the appropriate number of clusters, but also solves the current problems of overfitting caused by outlier and noise. Additionally, concerning the objective function value, which measures the cluster's coherence that is used to evaluate the quality of produced clusters, tests on the CLASSIC3 data set showed that the newly suggested algorithm works better than the spherical k-means by 8.04% in average.

퍼지 학습 규칙을 이용한 퍼지 신경회로망

  • 김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.180-184
    • /
    • 1997
  • This paper presents the fuzzy neural network which utilizes a fuzzified Kohonen learning uses a fuzzy membership value, a function of the iteration, and a intra-membership value instead of a learning rate. The IRIS data set if used to test the fuzzy neural network. The test result shows the performance of the fuzzy neural network depends on k and the vigilance parameter T.

  • PDF

Colored Object Extraction using Fuzzy Neural Network (퍼지 신경회로망을 이용한 칼라 물체 추출)

  • Kim, Yong-Soo;Chung, Seung-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.226-231
    • /
    • 2007
  • This paper presents a method of colored object extraction from an image using the fuzzy neural network. Fuzzy neural network divides an image into two clusters. It extracts the prototypes of Cb and Cr of object and background by controlling the vigilance parameter. The proposed method extracted object regardless of the position, the size, and the intensity of object. We compared the performance of the proposed method with that of the method of using subjective threshold value. And, we compared the performance of the proposed method with that of the method of using subjective threshold value by using several images with added noises.

A Fuzzy-ARTMAP Equalizer for Compensating the Nonlinearity of Satellite Communication Channel

  • Lee, Jung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8B
    • /
    • pp.1078-1084
    • /
    • 2001
  • In this paper, fuzzy-ARTMAP neural network is applied for compensating the nonlinearity of satellite communication channel. The fuzzy-ARTMAP is made of using fuzzy logic and ART neural network. By a match tracking process with vigilance parameter, fuzzy ARTMAP neural network achieves a minimax learning rule that minimizes predictive error and maximizes generalization. Thus, the system automatically learns a minimal number of recognition categories, or hidden units, to meet accuracy criteria. Simulation studies are performed over satellite nonlinear channels. The performance of proposed fuzzy-ARTMAP equalizer is compared with MLP-basis equalizers.

  • PDF

A Study on the Development of Automatic Detection and Warning system while Drowsy Driving (졸음운전의 자동 검출 및 각성 시스템 개발에 관한 연구)

  • Kim, Nam-Gyun;Jeong, Gyeong-Ho;Kim, Beop-Jung
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.315-323
    • /
    • 1997
  • Driving is a complex vigilance task that includes improper lookout, excessive speed and inattention. The primary objective of this research is to detect driver drowsiness so that the driver can be alerted to an impending traffic accident in performance. We developed the automatic detection and warning system during drowsy driving. A drowsiness detection system must be able to monitor driver status and detect the detrimental changes of a driver performance. Eyeblink has been found to be a reliable factor of drowsiness detection in earlier studies. As an additional parameter, we also considered the yawning which often occurs in a low vigilance state and predicts the drowsy state. We used a computer vision method to extract the eyeblink and yawning in the face image sequences. When the drowsy state was detected, the driver was refreshed by alarming device and menthol scent generator after deciding the warning level by fuzzy logic. For the evaluation of our system, we measured the physiological parameters such as EOG and EEG. The results indicated that it is possible to detect and alert the driver drowsiness temporarily or continuously by using our system.

  • PDF

Enhanced ART1 Algorithm for the Recognition of Student Identification Cards of the Educational Matters Administration System on the Web (웹 환경 학사관리 시스템의 학생증 인식을 위한 개선된 ART1 알고리즘)

  • Park Hyun-Jung;Kim Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.333-342
    • /
    • 2005
  • This paper proposes a method, which recognizes student's identification card by using image processing and recognition technology and can manage student information on the web. The presented scheme sets up an average brightness as a threshold, based on the brightest Pixel and the least bright one for the source image of the ID card. It is converting to binary image, applies a horizontal histogram, and extracts student number through its location. And, it removes the noise of the student number region by the mode smoothing with 3$\times$3 mask. After removing noise from the student number region, each number is extracted using vertical histogram and normalized. Using the enhanced ART1 algorithm recognized the extracted student number region. In this study, we propose the enhanced ART1 algorithm different from the conventional ART1 algorithm by the dynamical establishment of the vigilance parameter. which shows a tolerance limit of unbalance between voluntary and stored patterns for clustering. The Experiment results showed that the recognition rate of the proposed ART1 algorithm was improved much more than that of the conventional ART1 algorithm. So, we develop an educational matters administration system by using the proposed recognition method of the student's identification card.

  • PDF