• Title/Summary/Keyword: Vickers Hardness

Search Result 686, Processing Time 0.034 seconds

Determination of Optimum Cu and Mn Contents in Cu-bearing Hot Rolled Steel Sheets (Cu첨가형 열연강판의 최적 Cu 및 Mn 첨가량 규명)

  • Yoon, Il-Sung;Yun, In-Taek;Cho, Yeol-Rae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.274-279
    • /
    • 1998
  • Optimum Cu and Mn contents in 0.05wt%C-Cu bearing hot rolled steel sheets were investigated by vickers hardness measurement, tensile test and transmission electron microscopy. It was determined that the optimum Cu and Mn contents were 1.2wt% and 0.75-0.85wt% respectively. It was confirmed by TEM observation that the coarse recipitates were fcc $\varepsilon$-Cu in 0.05%C-1.2%Cu-0.75%Mn-O.O4%Nb steel sheets. The Cu-bearing steel sheets having 780MPa of tensile strength could be fabricated by 10% pre-strain and aging treatment at $550^{\circ}C$ for 30min.

  • PDF

Effect of Sintering Temperature on Microstructure and Mechanical Properties for the Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 소결 온도의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Jang, Min-Hyeok;Yoon, Ji-Hye;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.365-372
    • /
    • 2010
  • The evolution of sinterability, microstructure and mechanical properties for the spark plasma sintered(SPS) Ti from commercial pure titanium(CP-Ti) was studied. The densification of titanium with 200 mesh and 400 mesh pass powder was achieved by SPS at $750{\sim}1100^{\circ}C$ under 10 MPa pressure and the flowing $H_2$+Ar mixed gas atmosphere. The microstructure of Ti sintered up to $800^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated grains was shown in sintered bodies at $900^{\circ}C$ with the 400 mesh pass powder and the lamella grains microstructure had been developed by increasing sintering temperature. The Vickers hardness of 240~270 HV and biaxial strength of 320~340 MPa were found for the specimen prepared at $950^{\circ}C$.

Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering (방전플라즈마 소결법에 의해 제조된 Fe-Ni 합금의 미세조직 및 고온산화특성)

  • Lim, Chae Hong;Park, Jong Seok;Yang, Sangsun;Yun, Jung-Yeul;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2017
  • In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.

Mechanical Characteristics and Crack-Healing of ZIRCONIA(ZrO2) Composite Ceramics with SiC and TiO2 (SiC와 TiO2 첨가에 따르는 ZrO2의 기계적 특성 및 균열 치유)

  • Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.267-273
    • /
    • 2016
  • This study evaluated the mechanical properties and crack-healing abilities of zirconia composite ceramics. The six kinds of specimens used were: partially stabilized zirconia (Z) and five zirconia composite (ZS, ZST1, ZST2, ZST3, and ZST5) with SiC and $TiO_2$. There was not a large difference between the Vickers hardness of the six types of zirconia ceramics. The bending strength of the ZS specimen degraded rapidly, but the zirconia specimens with $TiO_2$ (ZST1, ZST2, ZST3, and ZST5) showed improved strength. Therefore, it was determined that the bending strength is affected by the crystallization, which is due to the addition of SiC and $TiO_2$. From the crack-healing conditions having the highest bending strength, monolithic zirconia retained its cracks, while the specimens of four types with SiC healed their cracks.

Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars (SF45와 SM45C의 마찰용접 최적화에 따른 회전굽힘피로 특성)

  • Kong, Yu Sik;Park, Young Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.219-224
    • /
    • 2017
  • A study on dissimilar friction-welded joints was performed for cam shaft applications using solid bar samples, 20mm in diameter, of forging steel(SF45) and carbon steel(SM45C). The main parameters of friction welding such as tensile tests, Vickers hardness surveys of the bond of area, the heat affected zone (HAZ), and the observation of microstructure were investigated to ensure a good quality of friction welding through visual observations. The specimens were tested as-welded and post weld heat treatment(PWHT). This paper deals with optimizing the welding conditions and analyzing various rotary bending fatigue test(RBFT) properties about heat-treated base metal(BM), as-welded and PWHT. Consequently, two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or any defect. Moreover, the fatigue limit of BM(SF45) and PWHT for the RBFT were observed as 180MPa and 250MPa, respectively. It was confirmed that the PWHT causes approximately 40% improvement in the fatigue limit when compared to the BM(SF45).

A Study on the Sintering of Diamond Composite at Low Temperature Under Low Pressure and its Subsequent Conductive PVD Process for a Cutting Tool (절삭 공구용 다이아몬드 복합체의 저온 저압 소결 합성 및 후속 도전형 박막 공정 특성 연구)

  • Cho, Min-Young;Ban, Kap-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • Generally, high-temperature, high-pressure, high-priced sintering equipment is used for diamond sintering, and conductivity is a problem for improving the surface modification of the sintered body. In this study, to improve the efficiency of diamond sintering, we identified a new process and material that can be sintered at low temperature, and attempted to develop a composite thin film that can be discharged by doping boron gas to improve the surface modification of the sintered body. Sintered bodies were sintered by mixing Si and two diamonds in different particle sizes based on CIP molding and HIP molding. In CVD deposition, CVD was performed using WC-Co cemented carbide using CH4 and H2 gas, and the specimen was made conductive using boron gas. According to the experimental results of the sintered body, as the Si content is increased, the Vickers hardness decreases drastically, and the values of tensile strength, Young's modulus and fracture toughness greatly increase. Conductive CVD deposited diamond was boron deposited and discharged. As the amount of boron added increased, the strength of diamond peaks decreased and crystallinity improved. In addition, considering the release processability, tool life and adhesion of the deposition surface according to the amount of boron added, the appropriate amount of boron can be confirmed. Therefore, by solving the method of low temperature sintering and conductivity problem, the possibility of solving the existing sintering and deposition problem is presented.

Carburization Characteristics of MERT Type KHR-45A Steel in Carbon Rich Environment (Carbon Rich 분위기에서의 KHR45강의 침탄특성 평가 연구)

  • Lim, Jae Kyun;Yang, Gimo;Ihm, Young Eon
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.293-298
    • /
    • 2013
  • In this study, an HP-mod. type(KHR-45A), which is used as a heater tube material in the pyrolysis process, was evaluated for its carburizing properties. It was confirmed from the microstructural observation of the tubes that the volume fraction of carbide increased and that the coarsening of Cr-carbide generated as a degree of carburization increased. The depth of the hardened layer, which is similar to the thickness of the carburized region of each specimen, due to carburization is confirmed by measurement of the micro-Vickers hardness of the cross section tube, which thickness is similar to that of the carburized region of each specimen. Two types of chromium carbides were identified from the EBSD (electron back-scattered diffraction) image and the EDS (energy-dispersive spectroscopy) analysis: Cr-rich $M_{23}C_6$ in the outer region and Cr-rich $M_7C_3$ in the inner region of tubes. The EDS analysis revealed a correlation between the ferromagnetic behavior of the tubes and the chromium depletion in the matrix. The chromium depletion in the austenite matrix is the main cause of the magnetization of the carburized tube. The method used currently for the measurement of the carburization of the tubes is confirmed; carburizing evaluation is useful for magnetic flux density measurement. The volume fraction of the carbide increased as the measuring point moved into the carburized side; this was determined from the calculation of the volume fraction in the cross-section image of the tubes. These results are similar to the trends of carburization measurement when those trends were evaluated by measurement of the magnetic flux density.

Evaluation of remineralization and acid resistance effect in fluoride varnish by Micro-computed tomography (미세전산화단층촬영술을 이용한 불소바니쉬의 재광화 및 내산성 평가)

  • Oh, Han-Na;Jeong, Seong-Soog;Lee, Hye-Jin;Youn, Hye-Jeong;Jung, Eun-Ju;Ha, Myung-Ok
    • Journal of Korean society of Dental Hygiene
    • /
    • v.10 no.5
    • /
    • pp.947-953
    • /
    • 2010
  • Objectives : The purpose of this investigation was to evaluate the remineralization and acid resistance in fluoride varnish by Micro-computed tomography (micro CT). Methods : Specimens of bovine teeth enamel were embedded in resin, polished and randomly divided into 3 groups (a control group, a NaF solution group, a fluoride varnish group). Each group has 3 specimens that was standardized according to Vickers hardness number (VHN). Specimens were immersed in demineralization solution for 72 hours. The control group had no treatment, the NaF solution group was treated by a 5% NaF solution for 4 minutes, and the fluoride varnish group was treated by a fluoride varnish for one hour. All specimens were subjected to a chemical pH cycling method for 14 days. After a chemical pH cycling method, the density were measured using micro CT. Then, specimens were immersed in each demineralization solution for 72 hours. After demineralization processed, the density were measured using micro CT. Results : 1. The density was significantly higher in the fluoride varnish and 5% NaF solution group than that of the control group after 14 days cycling (p<0.05). And the density value of the fluoride varnish group was higher than that of the 5% NaF solution, with no significant difference. 2. The differences of density after acid resistance treatment were statistically significant among 3 groups(p<0.05). Conclusions : It is suggested that fluoride varnish showed the remineralizing effect and acid resistance effect on the enamel, and micro CT could be used to evaluate the change of enamel lesion.

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Effect of fluoride application after dental prophylaxis by the type of dental floss (치실 종류에 따른 치면세마 시행에 대한 불소도포 효과)

  • Kim, Kyung-Hee;Ha, Myung-Ok;Hong, Nam-Hee;Cho, Min-Jung
    • Journal of Korean society of Dental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Objectives: This study was carried out to investigate the effect of fluoride application after dental prophylaxis by the type of dental floss. Methods: Artificial caries lesion was made on the surface of cow's permanent teeth having sound enamel surface and vickers hardness number(VHN) was measured. Specimens were classified into APF gel group and artificial saliva group. Each group was divided into waxed floss group and unwaxed flossed group. All specimens were immersed into the artificial saliva for one minute and dental flossing was applied to waxed or unwaxed floss. After washing and drying, APF gel groups were applied with fluoride for four minutes and artificial saliva groups were immersed into the artificial saliva for four minutes. After treatment, specimens were measured by VHN and surface conditions of enamel were confirmed by scanning electron microscopy(SEM). Results: VHN of waxed flossing and fluoride application group increased to $6.78{\pm}2.75$. VHN of unwaxed flossing and fluoride application group increased to $7.36{\pm}2.51$. There was no significant difference between waxed and unwaxed groups(p>0.05). VHN of waxed flossing and artificial saliva group increased to $1.07{\pm}2.84$. VHN of waxed flossing and artificial saliva group increased to $1.05{\pm}3.13$. There was no significant difference between waxed and unwaxed groups(p>0.05). There was significant increase in VHN between waxed/unwaxed flossing and fluoride application. However, waxed/unwaxed flossing with artificial saliva showed no significant VHN increase. SEM demonstrated no residue on the enamel surface in the waxed flossing groups. Conclusions: No difference was found in the remineralization of enamel by waxed flossing or unwaxed flossing.