DOI QR코드

DOI QR Code

Effect of Sintering Temperature on Microstructure and Mechanical Properties for the Spark Plasma Sintered Titanium from CP-Ti Powders

CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 소결 온도의 영향

  • Cho, Kyeong-Sik (School of Advanced Materials & System Engineering, Kumoh National Institute of Technology) ;
  • Song, In-Beom (School of Advanced Materials & System Engineering, Kumoh National Institute of Technology) ;
  • Jang, Min-Hyeok (School of Advanced Materials & System Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Ji-Hye (School of Advanced Materials & System Engineering, Kumoh National Institute of Technology) ;
  • Oh, Myung-Hoon (School of Advanced Materials & System Engineering, Kumoh National Institute of Technology) ;
  • Hong, Jae-Keun (Special Alloys Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Park, Nho-Kwang (Special Alloys Research Group, Korea Institute of Materials Science (KIMS))
  • 조경식 (금오공과대학교 신소재시스템공학부) ;
  • 송인범 (금오공과대학교 신소재시스템공학부) ;
  • 장민혁 (금오공과대학교 신소재시스템공학부) ;
  • 윤지혜 (금오공과대학교 신소재시스템공학부) ;
  • 오명훈 (금오공과대학교 신소재시스템공학부) ;
  • 홍재근 (한국기계연구원 재료연구소 특수합금연구그룹) ;
  • 박노광 (한국기계연구원 재료연구소 특수합금연구그룹)
  • Received : 2010.06.23
  • Accepted : 2010.09.03
  • Published : 2010.10.28

Abstract

The evolution of sinterability, microstructure and mechanical properties for the spark plasma sintered(SPS) Ti from commercial pure titanium(CP-Ti) was studied. The densification of titanium with 200 mesh and 400 mesh pass powder was achieved by SPS at $750{\sim}1100^{\circ}C$ under 10 MPa pressure and the flowing $H_2$+Ar mixed gas atmosphere. The microstructure of Ti sintered up to $800^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated grains was shown in sintered bodies at $900^{\circ}C$ with the 400 mesh pass powder and the lamella grains microstructure had been developed by increasing sintering temperature. The Vickers hardness of 240~270 HV and biaxial strength of 320~340 MPa were found for the specimen prepared at $950^{\circ}C$.

Keywords

References

  1. F.-K. Chen, K.-H. Chiu: J. Mater. Proc. Tech., 170 (2005) 181. https://doi.org/10.1016/j.jmatprotec.2005.05.004
  2. M. J. Tan, X. J. Zhu and S. Thiruvarudchelvan: J. Mater. Proc. Tech., 191 (2007) 202. https://doi.org/10.1016/j.jmatprotec.2007.03.078
  3. N. Bozzolo, N. Dewobroto, H. R. Wenk and F. Wagner: J. Mater. Sci., 42 (2007) 2405. https://doi.org/10.1007/s10853-006-1302-2
  4. G. Hussaina, L. Gaoa, N. Hayatb, Z. Cui, Y.C. Pang and N.U. Dard: J. Mater. Proc. Tech., 203 (2008) 193. https://doi.org/10.1016/j.jmatprotec.2007.10.043
  5. N. Poondla, T. S. Srivatsan, A. Patnaik and M. Petraroli: J. Allo. Comp., 486 (2009) 162. https://doi.org/10.1016/j.jallcom.2009.06.172
  6. W. E. Kroll: Trans. Am. Electrochem. Soc., 78 (1940) 35. https://doi.org/10.1149/1.3071290
  7. M. A. Hunter: J. Am. Chem. Soc., 32 (1910) 330. https://doi.org/10.1021/ja01921a006
  8. D. R. Armstrong, S. S. Borys and R. P. Anderson: U. S. Pat. 5,779,761 (1998).
  9. D. Apelian and C. H. Entekin: Int. Meter. Rev., 31 (1986) 77. https://doi.org/10.1179/095066086790324249
  10. R. Knight, R. W. Smith and D. Apelian: Int. Meter. Rev., 36 (1991) 221. https://doi.org/10.1179/imr.1991.36.1.221
  11. Y. T. Lee and D. G. Lee: Mech. and Mater., 20 (2008) 102.
  12. N.-K. Park, J. K. Hong, J. H. Kim and J. T. Yeom: Trends Met. Mater. Eng., 23 (2010) 24 (Korean).
  13. Y. B. Chun, S. H. Yu, S. L. Semiatin and S. K. Hwang: Mater. Sci. Eng., A 434 (2006) 294. https://doi.org/10.1016/j.msea.2006.06.082
  14. Y. Mishin and C. Herzig: Acta Mater., 48 (2000) 589. https://doi.org/10.1016/S1359-6454(99)00400-0
  15. V. V. Dabhade, T. R. Rama Mohan and P. Ramakrishnan: Mater. Sci. Eng., A 452-453 (2007) 386. https://doi.org/10.1016/j.msea.2006.10.097
  16. I. Lonardelli, N. Gey, H. R. Wenk, M. Humbert, S. C. Vogel and L. Lutterotti: Acta Mater., 55 (2007) 5718. https://doi.org/10.1016/j.actamat.2007.06.017
  17. T. Watanabe and Y. Horikoshi: Inter. J. Powder Met. Powder Tech., 12 (1976) 209.
  18. K. Asaoka, W. H. Lee, D. K. Kim and R. A. Kopczyk: J. Biomed. Mater. Rev., 19 (1985) 699. https://doi.org/10.1002/jbm.820190609
  19. B. B. Panigrahi, M. M. Godkhindi, K. Das, P. G. Mukunda and P. Ramakrishnan: Mater. Sic. Eng., A 396 (2005) 255. https://doi.org/10.1016/j.msea.2005.01.016
  20. M. Tokita: J. Soc. Powder Tech. Japan, 30 (1993) 790. https://doi.org/10.4164/sptj.30.11_790
  21. N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara and M. Tokita: J. Ceram. Soc. Japan, 103 (1995) 740. https://doi.org/10.2109/jcersj.103.740
  22. H.-K. Lee, S. W. Lee and K.-S. Cho: J. Kor. Powder Metall. Inst., 12 (2005) 70. https://doi.org/10.4150/KPMI.2005.12.1.070
  23. K.-S. Cho, K.-S. Lee, H.-K. Lee, S. J. Lee and H.-J. Choi: J. Kor. Ceram. Soc., 42 (2005) 567. https://doi.org/10.4191/KCERS.2005.42.8.567
  24. D. Handtrack, F. Despang, C. Sauer, B. Kieback, N. Reinfried and Y. Grin: Mater. Sic. Eng., A 437 (2006) 423. https://doi.org/10.1016/j.msea.2006.07.143
  25. K.-S. Cho, Z. A. Munir and H.-K. Lee: J. Ceram. Proce. Res., 9 (2008) 500.
  26. K.-S. Cho, H.-K. Lee and S. W. Lee: J. Kor. Powder Metall. Inst., 17 (2010) 13. https://doi.org/10.4150/KPMI.2010.17.1.013
  27. I.-H. Oh, H.-T. Son, S.-H. Chang, H.-M. Kim, K.-Y. Lee, S.-S. Park and H.-Y. Song: J. Kor. Inst. Met. Mater., 44 (2006) 441.
  28. A. Ibrahim, F. Zhang, E. Otterstein and E. Burkel: Material and Design, 32 (2011) 146. https://doi.org/10.1016/j.matdes.2010.06.019

Cited by

  1. Effect of particle size distribution on microstructure and mechanical properties of spark-plasma-sintered titanium from CP-Ti powders vol.15, pp.4, 2014, https://doi.org/10.1007/s12541-014-0382-1
  2. Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders vol.21, pp.3, 2014, https://doi.org/10.4150/KPMI.2014.21.3.229