• 제목/요약/키워드: Vibratory gyroscope

검색결과 30건 처리시간 0.022초

이중 질량체를 사용한 진동형 자이로스코프의 검출부 대역폭 개선 (Improvement of Sense Mode Bandwidth of Vibratory Silicon-On-Glass Gyroscope Using Dual-Mass System)

  • 황영석;김용권;지창현
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1733-1740
    • /
    • 2011
  • In this research, a MEMS vibratory gyroscope with dual-mass system in the sensing mode has been proposed to increase the stability of the device using wide bandwidth. A wide flat region between the two resonance peaks of the dual-mass system removes the need for a frequency matching typically required for single mass vibratory gyroscopes. Bandwidth, mass ratio, spring constant, and frequency response of the dual-mass system have been analyzed with MATLAB and ANSYS simulation. Designed first and second peaks of sensing mode are 5,917 and 8,210Hz, respectively. Driving mode resonance frequency of 7,180Hz was located in the flat region between the two resonance peaks of the sensing mode. The device is fabricated with anodically bonded silicon-on-glass substrate. The chip size is 6mm x 6mm and the thickness of the silicon device layer is $50{\mu}m$. Despite the driving mode resonance frequency decrease of 2.8kHz and frequency shift of 176Hz from the sensing mode due to fabrication imperfections, measured driving frequency was located within the bandwidth of sensing part, which validates the utilized dual-mass concept. Measured bandwidth was 768Hz. Sensitivity calculated with measured displacement of driving and sensing parts was 22.4aF/deg/sec. Measured slope of the sensing point was 0.008dB/Hz.

DSP(TMS320F240), 자이로센서, 직접드라이버/ 전동기를 이용한 2차원 안정화 시스템 설계 (The Design of a 2-Dim stabilizing System Using the DSP(TMS320F240), Gyroscope, Direct Driving motor/ driver)

  • 류정오
    • 한국정보통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.1025-1030
    • /
    • 2001
  • 3D stabilizing system구현 전 단계로서, 본 논문에서는 vehicle의 운동 중에도 지정된 방향을 유지하는 2D stabilizing system을 제작하였다. 본 system을 controller로서 DSP TMS320F240을, rate gyroscope로서 vibratory rate gyro(Tokimec co. TFG -l60D), direct drive driver/motor로서 SD1015B52-1·SD1004C04-l/DM1015B·DM1004C, control algorithm로서 PI control을 이용 system을 구현하여 rate gyro를 이용, 발생 error를 보상하도록 하여 비교적 나은 안정화 결과를 얻었다.

  • PDF

수평형 마이크로 자이로스코프의 비어링 현상 및 동특성 (Veering Phenomena and Dynamic Characteristics in Lateral Micro-Gyroscope)

  • 정호섭;박규연
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.132-140
    • /
    • 2001
  • The vibratory gyroscope can effectively measure the angular velocity as the oscillating and position-sensing mode are exactly tuned. The veering Phenomenon impedes the exact tuning, which is caused by the mode coupling of two modes. In this paper, the gyroscope's structure with two frames is introduced to minimize the veering phenomenon that destabilizes the tuning process of oscillating and position-sensing mode. Experimental results show that the Proposed structure can achieve the mode intersection without veering phenomenon.

  • PDF

SiOG 공정을 이용한 고 신뢰성 MEMS 자이로스코프 (A High Yield Rate MEMS Gyroscope with a Packaged SiOG Process)

  • 이문철;강석진;정규동;좌성훈;조용철
    • 마이크로전자및패키징학회지
    • /
    • 제12권3호
    • /
    • pp.187-196
    • /
    • 2005
  • MEMS에서 제조 공정 오차 및 외부 응력은 진동형 자이로스코프와 같은 MEMS 소자의 제조 수율에 많은 영향을 미친다. 특히 비연성 진동형 자이로스코프의 경우 감지모드와 구동모드의 주파수 차의 특성은 수율에 직접적인 영향을 미친다. SOI (Silicon-On-Insulator) 공정 및 양극접합 공정으로 패키징된 자이로스코프의 경우, 노칭현상으로 인하여 구조물이 불균일하게 가공되며, 동시에 열팽창계수 차로 인하여 접합된 기판에 큰 휨이 발생한다. 그 결과주파수 차의 분포가 커지고, 동시에 수율은 저하되었다. 이를 개선하기 위하여 SiOG (Silicon On Glass) 기술을 적용하였다. SiOG 공정에서는 접합 후에 기판의 휨을 최소화 하기 위하여 1장의 실리콘 기관과 2장의 유리 기판을 사용하였으며, 노칭을 방지하기 위하여 금속 박막을 사용하였다. 그 결과 노칭 현상이 방지되었으며, 기판의 휨도 감소하였다. 또한 주파수 차의 분포도 매우 균일하게 되었으며, 주파수 차의 편차 또한 개선이 되었다. 그 결과 높은 수율 및 보다 강건한 MEMS 자이로스코프를 개발할 수 있었다.

  • PDF

공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계 (Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence)

  • 정희문;하성규
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

반구형 공진 자이로스코프의 신호 검출 및 제어 (Signal Detection and Control of Hemispherical Resonator Gyroscopes)

  • 현철;강태삼
    • 센서학회지
    • /
    • 제21권3호
    • /
    • pp.204-210
    • /
    • 2012
  • In this paper, signal detection and control circuits for hemispherical resonator gyroscope(HRG) are designed, simulated and tested. HRG is one of the coriolis vibratory gyroscope(CVG) which has very stable quartz hemispherical resonator and shows very precise performance. HRG signals are usually modulated at the several kHz of resonant frequency. So the general control scheme cannot be applied directly because general control schemes mainly focused at low frequency range. Using demodulated and modulated PI control scheme with the signal detection which is presented in this paper, performance of manufactured HRG has tested.

On the control of vibratory MEMS gyroscopes

  • Choura, S.;Aouni, N.;El-Borgi, S.
    • Smart Structures and Systems
    • /
    • 제6권7호
    • /
    • pp.793-810
    • /
    • 2010
  • This paper addresses the control issue of vibratory MEMS-based gyroscopes. This study considers a gyroscope that can be modeled by an inner mass attached to an outer mass by four springs and four dampers. The outer mass itself is attached to the rotating frame by an equal number of springs and dampers. In order to measure the angular rate of the rotating frame, a driving force is applied to the inner mass and the Coriolis force is sensed along the y-direction associated with the outer mass. Due to micro-fabrication imperfections, including anisoelasticity and damping effects, both gyroscopes do not allow accurate measurements, and therefore, it becomes necessary to devise feedback controllers to reduce the effects of such imperfections. Given an ideal gyroscope that meets certain performance specifications, a feedback control strategy is synthesized to reduce the error dynamics between the actual and ideal gyroscopes. For a dual-mass gyroscope, it is demonstrated that the error dynamics are remarkably decreased with the application of four actuators applied to both masses in the x and y directions. It is also shown that it is possible to reduce the error dynamics with only two actuators applied to the outer mass only. Simulation results are presented to prove the efficiency of the proposed control design.

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.

전자력을 이용한 평면 진동형 각속도계의 자속간섭의 영향 (The effect of magnetic flux interference on the planar vibratory gyroscope driven by electromagnetic force)

  • 홍승완;이상훈;임형택;김용권;이승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1425-1427
    • /
    • 1995
  • The effect of the magnetic flux interference between the driving and detecting unit of the gyroscope by the electromagnetic force has been investigated quantitatively. The key parameter dictating the output characteristics of the gyroscope which is driven and detected using electromagnetic force is the mutual interference between the driving and detecting unit. Using the specially designed apparatus for positioning of the detecting unit, it is found that the vertical positioning of the detecting unit plays a significant role in minimizing the interference effect as evidenced by our experimental results.

  • PDF

Imperfection Parameter Observer and Drift Compensation Controller Design of Hemispherical Resonator Gyros

  • Pi, Jaehwan;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.379-386
    • /
    • 2013
  • The hemispherical resonator gyroscope is a type of vibratory gyroscope, which can measure angle or angular rate, based on its operating mode. This paper deals with the case when the hemispherical resonator gyroscope is operated in angle measurement mode. In angle measurement mode, the resonator pattern angle precesses, with respect to the external rotation input, by the principle of the Coriolis effect, so that the external rotation can be estimated, by measuring the amount of precession angle. However, this pattern angle drifts, due to the manufacturing error of the resonator. Since the drift effect causes degradation of the angle estimation performance of the resonator, the corresponding drift compensation control should be performed, to enhance the estimation performance. In this paper, a mathematical model of the hemispherical resonator gyro is first introduced. By using the mathematical model, a nonlinear observer for imperfection parameter estimation, and the corresponding compensation controller are designed to operate hemispherical resonator gyros, as angle measurement sensors.