• Title/Summary/Keyword: Vibrational Measurement

Search Result 71, Processing Time 0.022 seconds

Fault Diagnosis of a Pump by Using Vibrational Signals (진동신호를 이용한 펌프의 고장진단 연구)

  • Chung, Won-Sik;Lee, Sin-Young;Chung, Tae-Jin;Lee, Jong-Kil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.590-595
    • /
    • 2001
  • We must maintain the maximum operation capacity for production facilities and find properly out the fault diagnosis of the possessing equipments rapidly so as to decrease a loss caused by its failure. In this paper, we performed the fundamental study which develops a system of fault for a individually using pump widely or a pump as parts of the other machines. For each normal products, artificially transformed products, and working products under critical condition, we experimented in vibration, compared and analysed. Some faults showed into characteristic vibrations and other faults did not show consistent characters.

  • PDF

Precision-structural Design for Scanning Probe Microscopes (주사탐침현미경을 위한 정밀 구조 설계)

  • Lee, Moo-Yeon;Shim, Jae-Sool;Lee, Dong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4095-4099
    • /
    • 2010
  • Nano-measurement systems such as scanning probe microscopes should be protected against external disturbances. For the design of a scanning probe microscope, the external vibrations need to be characterized and the vibrational properties of the structural frame itself should be modeled. Also, the influences of the external vibration on the apparatus need to be known for its utmost precision. In this paper, the combined vibrational-characteristics of the floor and the structural frame are analyzed and experimentally investigated.

Development of Vibration Measurement Technique Using the Image Processing (화상처리를 이용한 진동측정방법 개발)

  • Lee, Seung-Bum;Kwak, Moon-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.327-329
    • /
    • 2000
  • This paper is concerned with the development of vibration measurement using the image processing. With the advance of the personal computer and the image processing device, it becomes possible to measure vibrations by converting the image into motion data. The image stored in the computer is based on pixels. Hence, the efficient technique which can compute vibrational motions from pixel data should be developed. In this study, we will show the feasibility of the image processing technique for vibration measurement. The experimental results show that vibrations can be measured from image data.

  • PDF

The Vibrational Evaluation of Railway Station by the Train Service (열차운행에 따른 철도역사의 진동영향 평가)

  • Kim, Byoung-Sam;Lee, Tae-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.968-975
    • /
    • 2010
  • The high interest for the ground vibrations which is caused by the train service is risen. When the trains are passed, a serious force is applied to ground and the caused vibration is propagated to the area of the building by the ground and rocks. This vibration comes to feel in the residents with the direct vibration, it is radiated in sound. The caused vibration and radiated sound affect the human's life, and this vibration brings about the operation interruption of the equipment which is sensitive to the vibration, or will bring about the structural damage of the building. In this study, the effect of the vibrations caused by the passing trains on the railway station and buildings is investigated by vibration measurement. Indoor and outdoor measurement is carried out by each trains.

Tunable Diode Laser Absorption Spectroscopy for Environmental Monitoring (파장가변 다이오드 레이저 흡수 분광학을 사용한 대기환경분석)

  • Ju Sang-U;Kim Seong-Geun
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.247-248
    • /
    • 2003
  • Tunable diode laser absorption spectroscopy (TDLAS) has been widely used in environmental monitoring of gaseous species in the past decade. TDLAS is a direct measurement technique for pollutants such as NOx without any interference from other species. Because of its superior spectral purity (~0.001 ­$cm^{-1}$), absorption linewidths with resolvable rotational structure can be studied in the mid infrared region where strong fundamental vibrational transitions of molecules appear. (omitted)

  • PDF

ISOTOPIC-SPECTRAL DETERMINATION OF CARBON IN HIGH PURITY INORGANIC MATERIALS

  • Lee, V.N.;Nemets, V.M.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.477-480
    • /
    • 1995
  • Isotopic-spectral method [I] was applicated for determination of carbon in silicate materials (pure silica, guartz glasses, geological probs etc.). Isotopic heterogeneous balancing of carbon in gaseous phase and solid samples was carried out at the temperature of $1500-1900^{\circ}K$. Spectroscopic measuring of isotope concentration in a balanced gas was made using the electron-vibrational band heads of CO molecules excited in HF discharge. Limits of detection of carbon concentrations appear to be $n^*10^{-6}$.

  • PDF

Measurement of CO Q-branch Raman Spectrum by using High Resolution Inverse Raman Spectrometer (고분해능 Inverse 라만 분광기를 이용한 CO Q-branch 라만 분광 측정)

  • 한재원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.59-64
    • /
    • 1989
  • Raman vibrational Q0branch spectra of pure CO are measured by using the technique of quasicw inverse Raman spectroscopy utilizing a pulsed single-frequency laser source. This approach gives enhanced sensitivity compared to earlier work which employed CW lasers, allowing extension of that work to higher accuracy, higher J states, and higher pressure. Fitting laws with pertubation theory and modified energy gap(MEG) theory are described, and the line broadening and shifting coefficients of J=0 to 24 are determined with both fitting laws.

  • PDF

Review of Rice Quality under Various Growth and Storage Conditions and its Evaluation using Spectroscopic Technology

  • Joshi, Ritu;Mo, Changyeun;Lee, Wang-Hee;Lee, Seung Hyun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.124-136
    • /
    • 2015
  • Purpose: Grain quality is a general concept that covers many characteristics, ranging from physical to biochemical and physiochemical properties. Rice aging during storage is currently a challenge in the rice industry, and is a complicated process involving changes in all of the above properties. Spectroscopic techniques can be used to obtain information on the quality of rice samples in a non-destructive manner. Methods: The objective of this review was to highlight the factors that contribute to rice quality and aging, and to describe various spectroscopic modalities, particularly vibrational and hyperspectral imaging, for the assessment of rice quality. Results: Starch and protein are the main components of the rice endosperm, and are therefore key factors contributing to eating and cooking quality. While the overall starch, protein, and lipid content in the rice grain remains essentially unchanged during storage, structural changes do occur. These changes affect pasting and gel properties, and ultimately the flavor of cooked rice. In addition, grain quality is significantly affected by growing and environmental conditions, such as water availability, temperature, fertilizer application, and salinity stress. These properties can be evaluated using spectroscopic techniques, and rice samples can be discriminated by using multivariate statistical analysis methods. Conclusion: Hyperspectral imaging and vibrational spectroscopy techniques have good potential for determining rice quality properties in a non-invasive manner, i.e., not requiring the introduction of instruments into the rice grain.

Non-contact monitoring of 3-dimensional vibrations of bodies using a neural network

  • Ha, Sung Chul;Cho, Gyeong Rae;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1011-1016
    • /
    • 2015
  • Gas piping systems in power plants and factories are always influenced by the mechanical vibrations of rotational machines such as pumps, blowers, and compressors. Unusual vibrations in a gas piping system influence possible leakages of liquids or gases, which can lead to large explosive accidents. Real-time measurements of unusual vibrations in piping systems in situ prohibit them from being possible leakages owing to the repeated fatigue of vibrations. In this paper, a non-contact 3-dimensional measurement system that can detect the vibrations of a solid body and monitor its vibrational modes is introduced. To detect the displacements of a body, a stereoscopic camera system is used, through which the major vibration types of solid bodies (such as X-axis-major, Y-axis-major, and Z-axis-major vibrations) can be monitored. In order to judge the vibration types, an artificial neural network is used. The measurement system consists of a host computer, stereoscopic camera system (two-camera system, high-speed high-resolution camera), and a measurement target. Through practical application on a flat plate, the measured data from the non-contact measurement system showed good agreement with those from the original vibration mode produced by an accelerator.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.