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Abstract: Gas piping systems in power plants and factories are always influenced by the mechanical vibrations of rotational ma-

chines such as pumps, blowers, and compressors. Unusual vibrations in a gas piping system influence possible leakages of liq-

uids or gases, which can lead to large explosive accidents. Real-time measurements of unusual vibrations in piping systems in 

situ prohibit them from being possible leakages owing to the repeated fatigue of vibrations. In this paper, a non-contact 3-di-

mensional measurement system that can detect the vibrations of a solid body and monitor its vibrational modes is introduced. 

To detect the displacements of a body, a stereoscopic camera system is used, through which the major vibration types of solid 

bodies (such as X-axis-major, Y-axis-major, and Z-axis-major vibrations) can be monitored. In order to judge the vibration 

types, an artificial neural network is used. The measurement system consists of a host computer, stereoscopic camera system 

(two-camera system, high-speed high-resolution camera), and a measurement target. Through practical application on a flat plate, 

the measured data from the non-contact measurement system showed good agreement with those from the original vibration 

mode produced by an accelerator. 
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1. Introduction

Pneumatic and hydraulic piping lines control machinery 

such as the engines for ship propulsion and the engines for 

power plants. Abnormal vibrations from this machinery pro-

duces leakages in their piping systems, and eventually produce 

large accidents in the engines when the control pipe lines mal-

function [1][2].   

As one of the non-contact approaches for vibration measure-

ments of machines or pipes, Machida et al. used laser speckle 

images to obtain the vibrational information of a machine. 

This method needs expensive laser sources to generate clear 

speckle patterns, and also requires complicated image analyses 

[3]. Yamagishi et al. measured flow-structure interactions of a 

flat plate vibrating in water [4]. 

This study is restricted to two-dimensional measurements of 

the vibrations of the plate. Jeon et al. [2][5] proposed a new 

measurement technique in which one high-speed camera was 

used and its time consecutive images were used to detect the 

displacement of measurement bodies. These results were also 

restricted to two-dimensional vibrations. Since most cases of 

solid vibrations are three-dimensional, it is necessary to meas-

ure the vibrations in three dimensions. 

In this study, a non-contact three-dimensional measurement 

system for the detection of vibrations of solid bodies is newly 

proposed. Further, this study uses a monitoring system that 

can sort the solid vibrations into major vibration types by the 

use of an artificial neural network [6]. 

2. Monitoring Procedure

Figure 1 shows the schematics of the monitoring system for 

the machine vibrations. The main purpose of the measurement 

system is to detect the vibrations of piping system or 

machinery. Two high-speed high-resolution cameras are in-

stalled toward to the measurement target.

Figure 2 shows the decision-making procedure to clarify the 

vibration types of solid bodies. experimental setup. First, the 

displacements of the target body given by the machine vi-

bration are calculated by the non-contact three-dimensional 
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measurement system. Next, the displacement data are used for 

teaching the artificial neural network. Last, real-time monitor-

ing of the vibrational machine is conducted based on the data-

base that was learned in the teaching process of the artificial 

neural network. 

Figure 1: Schematics of the monitoring system of the 

machine vibrations

Figure 2: Monitoring procedure for sorting the vibration types

3. Non-Contact 3D Measurements

  The non-contact three-dimensional measurement system 

for vibration consists of two cameras (high-speed 

high-resolution, 500 fps, 1024 × 1024 pixels), a host 

computer, and a halogen light. Figure 3 and 4 show the 

camera configuration for the measurement target. 

Figure 3: Two-camera measurement system

Figure 4: Photo of experimental setup

  
Figure 5 shows the procedure to obtain 3D displacements of 

the vibrational body. In order to perform 3D measurements 

with two cameras, a camera calibration process in which all 

camera parameters are calculated should be carried out before 

measurements. Two cameras were used to obtain the stereo-

scopic 3D measurements. The entire process, from camera cal-

ibration to the calculations of three-dimensional displacements 

of the body, is based on previous papers by Doh et. al [7]-[9]. 

Following is the brief procedure for camera calibration and 3D 

calculations. For camera calibration, a 10-parameter method 

was used. Ten unknown parameters (6 exterior parameters: l, 

   , mx, my, and 4 interior parameters: cx, cy, k1, k2) are 

calculated in the calibration process. For camera calibration, 

the landmark shown in Figure 7 was used.   

Figure 5: Photo of experimental setup
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Figure 6: Relations between camera coordinate and the land 

coordinate (absolute coordinate)
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Figure 7: Landmarks Relations between camera coordinate 

and the land coordinate (absolute coordinate)
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The calibration method is based on the pin-hole model. 

Equation (1) was used to construct the relation between the 

camera coordinates and the land coordinates (called absolute 

coordinates or physical coordinates). Here, cx and cy are the 

focal distances for the x and y components of the coordinates. 

Δx and Δy are the lens distortions. l refers to the distance 

between the origin O (0, 0, 0) and the principal point (X0, 

Y0, Z0) of the camera. (x, y) represents the camera 

(photographical) coordinates of the image centroid of the cali-

bration targets. Xm, Ym, and Zm represent three-dimensional 

coordinates of the target (object) in the physical coordinates 

(land coordinates). mx and my are misalignments between the 

coordinate centers of the two coordinates. After camera param-

eters were calculated, the three-dimensional coordinates (X, Y, 

Z) of the vector were calculated using Equation (2). The rota-

tional transformation matrix, MM, consists of the 10 camera 

parameters. That is, Equation (2), which represents the 3D po-

sition of the target, can be replaced with Equation (3).
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           are the elements of the rotation 

matrix obtained via the camera calibrations. The final three-di-

mensional position of the target was calculated using Equation 

(4) below:
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   (a) original         (b) camera 1       (c) camera 2

Figure 8: Image of the target artificially attached onto the 

object wall in Figure 3

where (X1, Y1, Z1) and (X2, Y2, Z2) denote the absolute co-

ordinates for camera 1 and camera 2, respectively, given by 

Equation (3). 

Time-consecutive images of the two cameras were captured, 

and these images were used to calculate the 3D displacements 

of the same target. The principle of finding the same target in 

the time domain is based on the bidirectional method proposed 

by Doh et al. [9]. 

To check the performance of the constructed 3D measure-

ment algorithm, a target as shown in Figure 8 (a) was at-

tached to the wall of the object in Figure 3, 8 (b) and 8 (c) 

show the camera images reconstructed by the two cameras’ 

parameters. All camera parameters were obtained from the 

aforementioned calibration process. Using these parameters, ar-

tificial 3D data of the target vibrations were converted into 2D 

camera coordinates, and once again, the 3D displacements of 

the target vibration were recovered. 

To generate the 2D artificial images shown in Figure 8 (b) 

and 8 (c) were used. To generate the artificial images, the 

method used by Hwang [10] and Okamoto et al. [11] was 

adapted. Figure 9 shows the calculated 3D displacement data 

of the target vibration with time changes. The amplitude im-

plies a nondimensional value in the pixels. In this study, these 

values were enlarged by 100 times. Therefore, the maximum 

actual amplitude is 1 mm. Figure 10 shows enlarged data in a 

range of time from 15 msec to 25 sec. As seen in this figure, 

X-direction vibration is clearly shown. 

Figure 11 shows the calculated 3D displacement data for the 

vibrations. A time-consecutive vibration was determined in the 

order of Y-axis vibration, X-axis vibration, Z-axis vibration, 
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and Y-axis vibration. These vibration data (i.e., displacements 

of the target) were trained by the artificial neural network ex-

plained in the next section. 

Figure 9: Order of vibrations with 10% noise of the max-

imum amplitude for time change [msec] (X-axis vibration→
Y-axis vibration→Z-axis vibration) (unit: mm × 10-2, max 

amplitude=100)

Figure 10: Order of vibrations with 10% noise of the max-

imum amplitude for time change [msec] (X vibration→Y vi-

bration →Z vibration) (unit: mm × 10-2, max ampli-

tude=100)

Figure 11: Order of vibrations with 10% noise of the max-

imum amplitudes for time change [msec] (Y-axis vibration 

(max:150) → X-axis vibration (max:75) →Z-axis vibration 

(max:125) → Y-axis vibration(max:100)) (unit: mm × 10-2)

4. Artificial Neural Network for Decision 

Making on Vibration Types

Figure 12 shows how the artificial neural network learns the 

3D vibration data (displacement data), and how the deci-

sion-making is preformed. Once the neural network learned the 

normal vibrational data, the decision-making was 

straightforward. Known information on the vibrations was 

taught as 1, 2, and 3. That is, pure X-axis vibration was 

taught as X = 1, pure Y-axis vibration as Y = 2, and pure 

Z-axis vibration as Z = 3. Figure 13 shows the neural network 

used in this study. The network consists of three layers: input, 

hidden, and output. The number of input layers is 3. 

Figure 12: Decision making procedure for normal and abnor-

mal vibrations

Figure 13: Structure of used neural network

 For each input, X-axis, Y-axis, and Z-axis vibration data 

were taught, as shown in Figure 13. The number of hidden 

layers is 10. The calculation algorithm of the neural network 

is based on the back-propagation used by the studies 

[2][5][12]. The calculation was repeated until the error value 

(E) between tk (teaching value) and zk (reference value) be-

came smaller than a threshold value. Briefly mentioning on the 

calculation process for the neural network, the signal of each 

neuron can be represented as Equation (5) for the basic neuron 

model in Figure 14. 

                 (5)

Figure 14: Conventional neuron model
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Figure 15: Used sigmoid function

The signal of each neuron was regarded as following the 

sigmoid function as Equation (6). 
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Here, a and b are integers obtained in the process of calcu-

lating the neural network. To minimize the training error, off-

set values were used. 

Figure 16 shows the results of decisions made by the con-

structed neural network. For the case of X-axis → Y-axis → 

Z-axis vibrations with a maximum amplitude of 100, deci-

sions were clearly recovered to X = 1, Y = 2, and Z = 3, re-

spectively, the same values of learning. Figure 17 shows the 

results of decisions made for the case of Y-axis (max ampli-

tude: 150) → X-axis (max amplitude: 75) → Z-axis (max 

amplitude: 125) → Y-axis (max amplitude: 100) vibrations. 

There are some noisy decisions for Z-axis vibrations. This is 

because the S/N ratios of the X values are smaller than the 

vibrations of other axes. Figure 18 shows the error ratio of 

the decision-making. The error ratio was lower than 1% ex-

cept in the case of the X-axis vibration. This value implies a 

failure percentage in deciding and judging the correct vi-

bration type. 

Figure 16: Results of decision made by the neural network 

for the case of signals in Figure 9

Figure 17: Results of decision made by the neural network 

for the case of signals in Figure 11

Figure 18: Error ratio for each X, Y, Z vibrations

  

Figure 19 shows the frequency of an accelerator by which 

the target body in Figure 4 was forced to vibration. The fre-

quency of the major vibration for the X, Y, and Z axes was 

25 Hz. Figure 20 shows the measurement 3D results obtained 

by the constructed measurement system. Figure 21 shows the 

FFT results calculated from the 3D results in Figure 20. The 

frequency was 26 Hz. This value is 1 Hz different compared 

with that of the original accelerator’s frequency, showing the 

capability of the constructed measurement system.  

 

Figure 19: Frequency of accelerator



Sung Chul Ha ․ Gyeong Rae Cho ․ Deog-Hee Doh

Journal of the Korean Society of Marine Engineering, Vol. 39, No. 10, 2015. 12                               1016

Figure 20: Measured 3D vibration data

25Hz

Figure 21: Measured frequency (FT unit: mm)

6. Summary

A non-contact 3D measurement system for detecting solid 

vibrations was constructed using a stereoscopic camera system. 

When the S/N (signal-to-noise) ratio was large, the neural net-

work failed in finding the correct vibration type with 10% of 

failure. The measurement system was validated via an accel-

eration test in which the measured frequency showed good 

agreement with that of the accelerator.

The measurement uncertainty for the displacement was low-

er than 5% for the entire measurement length.
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