• Title/Summary/Keyword: Vibration-free Control

Search Result 152, Processing Time 0.026 seconds

Sound Source Localization using HRTF database

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.751-755
    • /
    • 2005
  • We propose a sound source localization method using the Head-Related-Transfer-Function (HRTF) to be implemented in a robot platform. In conventional localization methods, the location of a sound source is estimated from the time delays of wave fronts arriving in each microphone standing in an array formation in free-field. In case of a human head this corresponds to Interaural-Time-Delay (ITD) which is simply the time delay of incoming sound waves between the two ears. Although ITD is an excellent sound cue in stimulating a lateral perception on the horizontal plane, confusion is often raised when tracking the sound location from ITD alone because each sound source and its mirror image about the interaural axis share the same ITD. On the other hand, HRTFs associated with a dummy head microphone system or a robot platform with several microphones contain not only the information regarding proper time delays but also phase and magnitude distortions due to diffraction and scattering by the shading object such as the head and body of the platform. As a result, a set of HRTFs for any given platform provides a substantial amount of information as to the whereabouts of the source once proper analysis can be performed. In this study, we introduce new phase and magnitude criteria to be satisfied by a set of output signals from the microphones in order to find the sound source location in accordance with the HRTF database empirically obtained in an anechoic chamber with the given platform. The suggested method is verified through an experiment in a household environment and compared against the conventional method in performance.

  • PDF

Nonlinear Aeroelastic Simulation of a Full-Span Aircraft with Oscillating Control Surfaces (항공기의 조종면 진동시 비선형 공탄성 시뮬레이션)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Paek, Seung-Kil;Kim, Young-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.81-87
    • /
    • 2002
  • In this paper, the transonic aeroelastic behavior of the generic fighter model is investigated in the time domain. The simulation of flutter flight test using forced harmonic motion of control surfaces including inertial coupling effects is conducted at the various conditions. The nonlinear aerodynamic effects are considered using a transonic small disturbance equation. A modal model obtained by a free vibration analysis is used for the structural model. The relations between the computed flutter boundary and the simulation results of the responses using the harmonic motions of control surfaces at various conditions are investigated.

A Study on the System Parameters to Reduce the Idle Gear Rattle (기어 래틀 저감을 위한 시스템 파라미터 연구)

  • 안병민;장일도;최은오;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.88-96
    • /
    • 1998
  • The rattle noise is the most significant in many kinds of manual gearbox nioses, which is generated at the idle stage of the engine operation. The main torsional vibrat- ion source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration. Many researchers reported the clutch torsional characteristic optimization method to reduce the idle gear rattle but only few of them give sufficient consideration to the system parameters like gear backlash, drag torque, system inertia, inertia distribution, engine torque fluctuation, idle engine rotation speed, and accessory load. In this paper, influence rate of system parameters on the gear rattle is presented and counterplans like backlash reduction, drag torque increase, inertia addition, inertia distribution modification and engine torque characteristic control are suggested.

  • PDF

Optimal Design of Magnetic Suspension Using Design of Experiment (실험계획법을 이용한 Magnetic suspension의 최적설계)

  • Jung, Jae-Woo;Kim, Sung-Ill;Ha, Seung-Hyoung;Hong, Jung-Pyo;Lee, Ju-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.769-770
    • /
    • 2006
  • This paper proposes the design method of a magnetic suspension that can control external vibration caused by low frequencies on the external vibrations by low frequencies. The magnetic suspension with individual controls is able to compensate the vibrations unlike a mechanical suspension. In the magnetic suspension, two characteristics are required. Firstly, magnetic motive force(MMF) by armature winding must be increased linearly. Secondly, identical magnitude of output force should be produced as direction of MMF. In this paper, axis-symmetric finite element analysis is used for magnetic field analysis. In order to optimize magnetic suspension, response surface methodology combined with experimental design is applied to investigate the characteristics and optimize the magnetic suspension for vibration -free table.

  • PDF

Vibration Control of Flexible Manipulator (유연한 조작기의 진동 제어)

  • Bae, Keon-Hyo;Lee, Jae-Won;Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.163-169
    • /
    • 1993
  • A flexible manipulator can move in the high speed even with the small driving torque. The dymanic equations of flexible manipulator which include 2 vibrational modes are derived using the clamped-free boundary condition. Simulation results of the 6th order model are well matched with experimental results. The hub angle of the flexible mainpulator can be controlled without vibration of the beam by the feedback of both hub angle and strain. The overshoot of the hub angle in the step response is reduced without sacrificing the rise time using the cycloidal function instead of the step function as the referenmce input.

  • PDF

Analysis of the Free Vibrations of Rectangular Plates Using Database (데이터베이스를 이용한 사각평판의 자유진동 해석)

  • No, Seung-Hun;Jo, Han-Jung;Choe, Eun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1978-1990
    • /
    • 2000
  • In this study, the free vibrations of the cantilever plate, which is one of the most frequently used elements in various machine structures, are analyzed and further the results are utilized to develop the methodology to predict and control the natural frequencies for designing stabilized systems. The proposed method has three major steps. The first step is the frequency response test to investigate the natural frequencies of some plates, then the database is constituted from experiments and the FEM, and finally the natural frequencies are predicted using the database to be cross-checked by the identification test. The result of this study will help design many different stable structures without any complicated calculations.

Dynamic Modeling and Stability Analysis of a Flying Structure undertaking Parametric Excitation Forces (매개변수 가진력을 받아 비행하는 구조물의 동적 모델링 및 안정성 해석)

  • 현상학;유홍희
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1157-1165
    • /
    • 1999
  • Dynamic stability of a flying structure undertaking constnat and pulsating thrust force is investigated in this paper. The equations of motion of the structure, which is idealized as a free-free beam, are derived by using the hybrid variable method and the assumed mode method. The structural system includes a directional control unit to obtain the directional stability. Unstable regions due to periodically pulsating thrust forces are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the constant force, the location of gimbal, and the frequency of pulsating force. The validity of the diagrams are confirmed by direct numerical simulations of the dynamic system.

  • PDF

Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Harbaoui, Imene
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.499-507
    • /
    • 2020
  • In current study, utilizing the Kelvin's theory with polynomial, exponential and trigonometric volume fraction laws for functionally graded cylindrical shell vibrations. Effects of different parameters for ratios of length- and height-to-radius and angular speed versus fundamental natural frequencies been determined for two categories of cylindrical shells with clamped-free edge condition. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The frequencies are same when the cylinder is stationary. The frequencies increases and decreases on changing the constituent materials. The frequency results are verified with the earlier literature for the applicability of present model.

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.