• Title/Summary/Keyword: Vibration of Plates

Search Result 864, Processing Time 0.026 seconds

Flapwise Bending Vibration Analysis of Rotating Cantilever Plates (회전 외팔평판의 면외 방향 굽힘진동 해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.613-618
    • /
    • 2000
  • It is well known that the rotating motion of a blade-like structure induces centrifugal inertia force that causes the variation of the natural frequencies of the structure. Even though most of blade-like structures can be successfully Idealized as beams, some behave like plates rather than beams. This paper presents a modeling method for the flapwise bending vibration analysis of rotating cantilever plates. The dependence of natural frequencies and free vibration modes on the angular speed as well as the aspect ratio of a rotating plate is investigated. Particularly. the natural frequency loci crossing is observed and discussed In the present study.

  • PDF

Dynamic Characteristics of Two Identical Circular Plates in Contact with Water (물과 접촉하는 동일한 두 원판의 동적 특성)

  • 정경훈;김태완;김강수;박근배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.347-352
    • /
    • 1998
  • An analytical method for evaluating the free vibration of two circular plates coupled with water was developed by assuming the clamped boundary condition of the plates and an ideal fluid. The method was applied to analyze the transverse vibration modes, in-phase and out-of-phase, and the results were compared to those obtained by the finite element method (FEM) using a commercial ANSYS 5.2 software. It was found that the theoretical results can predict well the coupled natural frequencies for all in-phase modes with good accuracy. However, the analytical method shows some discrepancies compared with FEM analysis in predicting the coupled natural frequency of the out-of-phase modes, except when m = 0, the zero nodal circle. The analytical method also applied to evaluate the characteristics of the natural frequency with respect to the major parametric variation in mode numbers and distance between the circular plates.

  • PDF

Flexural Vibrations of Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 직사각형 평판의 굽힘 진동)

  • 정희영;정의영;김주우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.336-343
    • /
    • 2004
  • This paper reports the first known free vibration data for thin rectangular plates with V-notches. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets include (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained, and (2) corner functions which account for the bending moment singularities at the sharp reentrant corner of the Y-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance the convergence and accuracy of nondirectional frequencies for rectangular plates having the V-notch. In this paper, accurate frequencies and normalized contours of vibratory transverse displacement are presented for various notched plates, so that the effect of corner stress singularities may be understood.

Vibration Analysis of Rotating Cantilever Plates with a Concentrated Mass (집중 질량을 가진 회전하는 외팔 평판의 진동 해석)

  • 양정식;유홍희
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1130-1136
    • /
    • 1998
  • A modelling method for the vibration analysis of rotating cantilever plates with a concentrated mass is presented. The equations of motion for the rotating plates with a concentrated mass located in an arbitrary position are derived and transformed into a dimensionless form. For the mathematical modelling of the concentrated mass. a mass density Dirac delta function is used. The effects of concentrated mass and its location. angular speed. plate aspect ratio. and hub radius of the rotating plate on the natural frequencies are studied. Particularly. mode shape variations due to some parameter variations are investigated.

  • PDF

An Experimental Study on the Free Vibration of the Cantilever Composite Rectangular Plates with Point Supports (점지지된 복합재료 외팔 사각판의 자유진동에 관한 실험적 연구)

  • 이영신;최명환;류충현
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.623-631
    • /
    • 1998
  • The free vibration analyses of the isotropic and composite(CFRP, GFRP) rectangular plates with point supports at the free edge and middle position are performed. The natural frequencies and nodal patterns of plates with point supports are experimentally determined by impact testing using an impact hammer. To compare and verify these experimental results, the finite element analysis is also carried out. The effect of the point support position, the number of point supports, and the anisotropic parameters on the natural frequencies and nodal patterns of cantilevered rectangular plates are investigated.

  • PDF

Experimental Modal Analysis of Perforated Rectangular Plates Submerged in Water (물에 잠긴 다공 직사각평판의 실험적 모드해석)

  • Yoo, Gye-Hyoung;Lee, Myung-Gyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.345.1-345
    • /
    • 2002
  • This paper dealt with an experimental study on the hydroelastic vibration of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the analytical method based on the relation between the reference kinetic and maximum potential energies and compared with the experimental results. (omitted)

  • PDF

Free Vibration Cantilevered Composite Rectangular Plates with Point Supports (점지지된 복합재료 외팔 사각판의 자유진동)

  • 이영신;최명환;류충현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.414-419
    • /
    • 1997
  • The free vibration analysis of cantilever CFRP and GFRP composite rectangular plates with point supports at the free edge and interior position is performed. The natural frequencies and mode shapes of plates are experimentally determined by impact testing using an impact hammer. To compare and verify these experimental results, the finite element analysis is also carried out and the non-dimensional frequency parameters are compared with FE analysis results. The effects of the number and location of the point support on the frequencies are examined. In the experimental results, it is found that a significant increase in frequencies occurs when the point supports are added on certain parts of plates.

  • PDF

Free vibration analysis of arbitrary shape plates with simplified series function (단순급수함수를 이용한 임의 형상판의 자유진동 해석)

  • 정대근
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.345-352
    • /
    • 1995
  • A very simple and computationally efficient numerical method is developed for the free vibration of arbitrary shape plates. A set of two- dimensional simple series functions is used as an admissible displacement functions in the Rayleigh-Ritz method to obtain the natural frequencies for the arbitrary shape plates. From the prescribed starting function satisfying only the geometric boundary conditions, the higher terms in the series function are constructed with adding order of polynomial. Natural frequencies are obtained for the arbitrary shape plates, with combinational boundary conditions. The obtained numerical results are presented, some cases are verified with other numerical methods in the literature.

  • PDF

Hydroelastic Vibration Analysis of Two Circular Plates with Simply Supported Boundary Condition (단순지지된 두 원판의 유체연성 고유진동 해석)

  • 정경훈;이규만;박근배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.603-608
    • /
    • 2001
  • This paper deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid is filled between the two plates and the plates are simply supported along the plate edges. The proposed method is verified by the finite element analysis using commercial software with an excellent accuracy. The effect of the plate boundary conditions on the fluid-coupled natural frequency is investigated.

  • PDF

Free vibration analysis of plates resting on elastic foundations using modified Vlasov model

  • Ayvaz, Yusuf;Oguzhan, Celal Burak
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.635-658
    • /
    • 2008
  • An application is presented of a modified Vlasov model to the free vibration analysis of plates resting on elastic foundations. The effects of the subsoil depth, the ratio of the plate dimensions, the ratio of the subsoil depth to the plate dimension in the longer direction, and the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on an elastic foundation are investigated. This analysis has been caried out by the aid of a computer program. The first ten frequency parameters are presented in tabular and the graphical forms to evaluate the effects of the parameters considered in this study. Then mode shapes corresponding to the first six of the frequency parameters are given in graphs. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on an elastic foundation is generally larger than those of the other parameters considered in this study.