• Title/Summary/Keyword: Vibration of Plates

Search Result 864, Processing Time 0.032 seconds

Effects of Source Correlation on Plates Driven by Multi-point Random Forces (불규칙 작용힘들간의 Correlation이 평판의 진동레벨에 미치는 영향)

  • Oh, S.G.;Park, J.D.;Kwak, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.166-176
    • /
    • 1994
  • The problem of reducing the vibration level of elastic plates driven by multiple random point forces is analyzed in this study. First, the analytical solution for the vibration level of finite thin plates with four simply supported edges under the action of multiple random point force is derived. By assuming the plates to be lightly damped, an approximate solution for the vibration level of the plate is obtained. A numerical study is carried out to determine an optimal spacing distance between the multiple point forces in order to produce a relative minimum in the plate's vibration level. The optimal spacing distance is shown to depend on the given excitation band. The effects of wave cancellation in the near field of the multiple point forces are discussed by using the equivalence of certain stationary random responses and deterministic pulse responese.

  • PDF

Shear and Normal Damping Effects of Square Sandwich Plates with Four Edges Clamped (네변이 고정된 사각 샌드위치 평판에서의 수직 및 전단 감쇠 효과)

  • 이병찬;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.217-223
    • /
    • 1996
  • A structure's vibration characteristic is determined by modal property of the system. Through proper vibration analysis or experiments, the structure can be modified to reduce of vibration and noise. This paper is concerned with the natural frequency and modal loss factor of sandwich plates with viscoelastic core. The effects of shear and normal strain in the viscoelastic layer are investigated on modal properties, natural frequency and modal loss factor, by changing geometry parameter and viscoelastic material property of sandwich plates. The errors of modal parameters resulting from neglecting the extension or compression in the core material for simply supported(S-S-S-S) case are compared with those for clamped(C-C-C-C) boundary condition. Finite difference method(FDM) is utilized as numerical analysis technique of square sandwich plates for fixed boundary conditions. In order to reduce computation time and increase accuracy, improved finite difference expression with fourth order truncation error was used.

  • PDF

Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates (환형평판과 원판으로 구성된 유체용기의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In;Park, Jin-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.968-974
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

Natural Vibration Analysis of Two Circular Plates Coupled with Bounded Fluid (갇힌 유체로 연성된 두 원판의 고유진동 해석)

  • 정명조;정경훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.439-453
    • /
    • 2001
  • This study deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid in a rigid cylindrical container and the two plates are clamped along the plate edges. The proposed method is verified by the finite element analysis using commercial program with a good accuracy. Two transverse vibration modes, namely in-phase and out-of-phase, are observed alternately in the fluid-coupled system when the number of nodal circles increases for the fixed nodal diameter. The effect of gap between the plates on the fluid-coupled natural frequencies sis also investigated.

  • PDF

Free Vibration Analysis of Two Circular Plates Coupled with Bounded Fluid (갇힌 유체로 연성된 두 원판의 고유진동 해석)

  • 정경훈;박근배;장문희;정명조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.213-219
    • /
    • 2001
  • This paper deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the [mite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid is filled in a rigid cylindrical container and the two plates are clamped along the plate edges. The proposed method is verified by the finite element analysis using commercial software with a good accuracy. Two transverse vibration modes, namely in-phase and out-of-phase, are observed alternately in the fluid-coupled system when the number of nodal circles increases for the fixed nodal diameter. The effect of gap between the plates on the fluid-coupled natural frequency is also investigated.

  • PDF

Exact solutions of axisymmetric free vibration of transversely isotropic magnetoelectroelastic laminated circular plates

  • Chen, Jiangying;Xu, Rongqiao;Huang, Xusheng;Ding, Haojiang
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.115-127
    • /
    • 2006
  • The axisymmetric free vibrations of transversely isotropic magnetoelectroelastic laminated circular plates are studied. Based on the three-dimensional governing equations of magnetoelectroelastic medium, the state space equations of laminated circular plates are obtained. By using the finite Hankel transform and rendering the free terms left by the transform in terms of the boundary quantities, the solutions of the state space equations are given for two kinds of boundary conditions. The frequency equations of the free vibration are derived using the propagator matrix method and the boundary conditions at top and bottom surfaces. By virtue of the inverse Hankel transform, the mode shapes are also determined. Since the solutions strictly satisfy the governing equations in the region and the boundary conditions at the edges, they are the three-dimensionally exact. Finally, the natural frequencies of such plates are tabulated and compared with those of the piezoelectric and elastic plates in the numerical example.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

Free Vibration Analysis of 4 Edges Clamped, Isotropic Square Plates with 2 Collinear Circular Holes (2개의 원형구멍이 있는 4변고정, 등방성 정사각형 판의 자유진동해석)

  • 이영신;이윤복
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.283-295
    • /
    • 1994
  • This work presents the experimental and finite element analysis results for the free vibration of 4 edges clamped, isotropic square plates with 2 collinear circular holes. Natural frequencies of finite element analysis are obtained for the complete square plate, the square plates with a central circular hole and the square plates with 2 collinear circulare holes. And natural frequencies are experimentally measured for the complete square plate, the square plate with a central circular hole(d = 150 mm) and the square plates with 2 collinear circular holes. Agreement between experimental and FEM results is excellent. Mode shapes in special case are presented. The conclusions of the study are as follows. There is little variation of nondimensional frequency parameters for the first six mode when the aspect ratio of circular hole is less than 1/6 in the isotropic square plates with 2 collinear circular holes. And the first nondimensional frequency parameter doesn't vary as the aspect ratio of circular hole increase.

  • PDF

In-Plane Free Vibration Analysis of Plates (평판의 면내 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun;Byun, Jung-Hwan;Jang, Duck-Jong;Moon, Deok-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.291-296
    • /
    • 2007
  • To analyze accurately the free vibration of a structure by using the finite element method (FEM), we model the structure as a numerical model with many degrees-of-freedom. However the FEM needs much computation time and storage in this case. The authors developed the finite element-transfer stiffness coefficient method (FE-TSCM) for overcoming the drawback of the FEM. In this paper, the authors apply the FE-TSCM to the in-plane free vibration analysis of plates with various shapes. Two numerical examples, a rectangular plate and a triangular plate, are used to compare the results of the FE-TSCM and the FEM. Through the numerical calculation, we confirm that the FE-TSCM can be applied to the plates with various shapes and is effective to in-plane free vibration analysis of plates.

  • PDF

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions: the case that straight and curved boundaries are mixed (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 진동해석 : 직선 및 곡선 경계가 혼합된 경우)

  • Choi, Jang-Hoon;Kang, Sang-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.534-537
    • /
    • 2005
  • Free Vibration Analysis using Non-dimensional Dynamic Influence Function (NDIF) is extended to arbitrarily shaped plates including polygonal plates. Since the corners of polygonal plates have indefinite normal directions and additional boundary conditions related to a twisting moment at a corner along with moment and shear force zero conditions, it is not easy to apply the NDIF method to polygonal plates wi th the free boundary condition. Moreover, owing to the fact that the local polar coordinate system, which has been introduced for free plates with smoothly varying edges, cannot be employed for the straight edges of the polygonal plates, a new coordinate system is required for the polygonal plates. These problems are solved by developing the new method of modifying a corner into a circular arc and setting the normal direction at the corner to an average value of normal direct ions of two edges adjacent to the corner. Some case studies for plates with various shapes show that the proposed method gives credible natural frequencies and mode shapes for various polygons that agree well with those by an exact method or FEM (ANSYS).

  • PDF