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Effects of Source Correlation on Plates Driven by Multi-point Random Forces

Se-Gye Ob*, Jung-Dug Park*™, Su-Hyun Han**, Chang-seub kwak™**

ABSTRACT

The problem of reducing the vibration level of elastic plates driven by muliiple random
point forces is analyzed in this study. First, the analytical solution for the vibration level
of finite thin plates with four simply supported edges under the action of muliiple random
point force is derived. By assuming the plates to be lightly damped, an approximate solution
for the vibration level of the plate is obtained. A numerical study is carried out to determine
an optimal spacing distance between the multiple point forces in order to produce a relative
minimum in the plate’s vibration level. The optimal spacing distance is shown to depend
on the given excitation band. The effects of wave cancellation in the near field of the multiple
point forces are discussed by using the equivalence of certain stationary random responses

and deterministic pulse responese.

Key Words : Multi-point random forces, Source correlation, Vibration level, Wave cancellation,
Near field

1. Introduction machine designers and acoustical engineers,

In recent years,

numerous researchers have

The forced vibration of machines and struc-
tural elements continues to be an important
problem in engineering, noise control, and ma-
chine design. in the
vibration control of structures is a relatively

Widespread interest

recent development stemming largely from
desires to increase machine life and working
efficiency. It is a topic of practical concern to

* Agency for Defense Development
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been working in the field of forced siructural
vibration under the action of multiple point
forces. Studies
reductions in the structural vibration level by

in this area have led to

adjusting the number and Ilocation of the
exciting forces and the joint statistical properties
These

encouraging to engineers interested in the design

of the random forces. results are
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of quieter machines,

The present study concentrates on reducing
the vibration level in structures under the action
of multiple random point forces by adjusting the
The effects on the
vibration level of the correlation between input

applied force positions.

forces containing band-liminted frequency
is investigated The
" spacing between multiple point forces is shown

components in detail.
to have an important effect on the vibration
level. An optimal spacing beiween the applied
forces is found that minimized the vibration.

In the following sections the problem is
formulated in general, and formal solutions are
obtained. The principal calculations, however,
are performed using approximate procedures.
Special consideration is given to stationary wide-
band excitation of a square plate. The optimal
spacing between input forces to produce a
relative minimum in the vibration response is
predicted and explained by the effect of wave
cancellation in the near field of the applied

forces.

2. Random vibration of a finite thin plate

Consider a simply supported rectangular
homogeneous plate, whose sides are of lengths
Lx, and Ly. This plate is acted upon by N
transverse forces fi{t) located at the positions
x=a and y=b. The equation of motion for the
transverse plate displacement W(x, y, t} may
be written as

a2y

aW
DVAW + C — + ph
at at2

N

= ;2 8(x~a1)8(y-b1)f1 (1) ¢))
=1

where ph is the mass per unit area and C is

the viscous damping per unit area, The operator

V4 is (82/6x2+452/6v2)2 For a flat rectangular

plate of thickness h, the bending modulus is
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D=Eh2/12(1-v2)
and v is Poisson’s ratio.

where E is Young's modulus

The differential equation of motion for the
undamped structure within the periphery of the
plate is given by

D43 jp = phojp? P ip (2)

where the natural modes ¥jp for a rectangular
plate

jmx pry
sin —

x Ly

Yip = 2 sin (3)

satisfy the eigenvalue problem determined by the
boundary conditions, is the natural

)

and ®jp
frequency corresponding to ¥jp(x,

wjp = (/D)1 20(in/Lx)2+(pn/Ly)2]. (4)
The modes also satisfy the orthogonality con-
dition

Lx Ly
[ [ phipjpwkaedxdy = M8jkdpq (5)

0o o
where now M-phL.Ly is the total mass of the

plate. The asymptotic average frequency spacing
between successive natural frequencies is®™

Aw=(D/ph)1/2 (6)

XLy
The umit complex frequency response function
structure can be

for the two-dimensional

represented by the modal sum

H(x,y,w:a1,b1) =

“M8

N
z Pielx,y)
p=1 1=1

wjp(al,bl)ﬂjp(‘-_’) (7

is the unit complex frequency
the j-th and p-th

where Hip{w)
respnse function® for

modes :

1

Hjp(@) = —————
iz (@) M(wjp2—w2+ifw)

(8

and the modal bandwidth £ is
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C
8= e (9
We consider the mean-square displacement at
the location {x, y), which may be writlen as

: Yie(x,y)

E(W2(x,y)] = 2
ivp=1 k,q=1

Wrq(x,¥)1ipka (10)

where Ijpkq represents the integral

o

Ijpka = J Hjp(@Hkq*(W)Pjpkq(wlde (11)

-y

and the superscript “*" means the complex
conjugate. Pipkq (@) is the modal excitation cross

-spectral density function

N N
Pipka = T I Yipe(x1,71) ke
I=1 J=1

(x2,y2)8¢(ar,br,25,b5,w). (12)

The cross-spectral density function of the ap-
plied forces is given by

Sf(ar,br,as,by,w)=5(x1-a1)8(y1-b1)

8(x2-a1)8(y2-by)S11(w) (13)

where N is the number of the applied forces
and Sy{w) is the power spectral density be-
tween the [-th and J-th forces.

The summation of the mean-square
displacement may be thought as an index of
the vibration level of the entire plated and can
be obtained by integrating the mean-square
displacement over the entire surface

Lx Ly

W= [ [ E[W2(x,y)ldxdy
o 0
Lx Ly = @

N
= f f z z 2 ij(xl»YI)

0 0 Jj.p=t k.gq=1 I[.J=1
[--]

Yka(xz,y2) I Hjp(w) ‘Hiq*(@) ¥in(ar,b1)

Ykaq(az,bz)S1y(0)dwdxdy. (14)

3, Approximate Solutions based on
modal sum

In the following, some approximate solutions
for the vibration level of the plate are proposed
in order to simplify the calculation. Two
assumptions are made which are particularly
popular and useful in random vibration analysis.

The first assumption is that the damping of
the plates is light enough and the resonance
frequencies are sufficiently separated, so that
the ‘off-diagomnal coupling’ terms may be
neglected®, This implies omitting all terms in
the fourfold modal summation except those for
which j=k and p=q.

If the plate is square, the mode degeneracy
is a symmetrically occurring phenomenon, In this
case, every mode ¥¢ip(j*p) has a mate ¥p; with
the identical natural frequency. The important
contributions to the dynamic response come not
only from the terms representing modal auto-
correlations but also from the terms representing
modal cross-correlations arising from those
modes with j=q and p=k.

The second assumption is the ‘white noise”
approximation, which implies that the auto- and
cross-spectral density functions Sij(w) are slowly
varying with respect to frequency relative to the
rapidly varying mode response functions Hp(w),
especially near the frequencies @w=wj. The
modal sum (10) for the mean-square
displacement than becomes

n N
E[W2(x,y)}= = s
j.p=m 1,J=1

Yip(ar,br)¥is(ay,bs)

Yip2(x,y)

S JHijp (W) |2 S1y(0)de (15)
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where the summation over the mode number j
and p is confined whthin the range where thd
condition of wi< wi<ws is satisfied, and w; and
we represent lower and upper cut-off frequncies
of the excitation band, and m and n represent
the lower and the upper cut-off frequencies of
the excitation band, and m and n represent the
lower and upper resonant m-ode numbers within
the given band.

In the case of band-limited white noise
spectra, the spectral density for these forces
may be written as

So, wi{lwi{wz
Sr1 =833 =
0, otherwise
(16)
rSo wr{iwiwz
S1J = 81 =
0, otherwise

where r is the excitation correlation coefficient
(-1€r<1). The integral in (15) has the value
Wi=nS¢/M28 which is mdependent of wp®, The
mean-square displacement in the rectangular
plate is thus approximated by the modal sum

n N 16 jnx
E[W2(x,y)]=W 12 = b sin2 —
j.p=m 1,J=1 wjp? Lx
pry jmay prbi jmay
sinZ — -sin sin sin
Ly Lx Ly Lx
paby
sin an
Ly

For the case of a simply supported square
plate (Ly=Ly=L), every mode ¥j, for j%p has
a mate ¥p; with the identical natural frequency.
The plate response, including both modal cross-
correlation terms (j=¢, p=k) and auto-
correlation terms (j=k, p=q), may be written
as

ECW2(x,y)]/W12=A(x, y)+B(x,y) (18)

with
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n N 16 jnx
Ax,y)= Z b sin? —
J.op=m [,J=t @jp? L
prny jmaj prbr jmay
sinZ — . gin sin sin
L L L L
prby
sin — (18-a)
L
n N 16 jnx
B(x,y)= = b sin —
j.p=m 1,J=1 @jp? L
pry pax jny jmay
sin —- sin — .sin — sin
L L L L
prbr pray jnby
sin sin sin — (18-b)
L L L

where A(x, y) is due to by the modal auto-
correlations and B(x, y) is due to by the modal
cross—correlations. The integration of B(x, ¥)
over the entire plate vanishes due to the
orthogonality of the modes. Therefore the
vibration level of the entire plate become®

L L
W=t [ E[W2(x,y)ldxdy
a 0

L L
Wiz f [ A(x,y)dxdy
0o 0
n N jmay
= 47l280/M23 % Z sin ——
i, p=m 1,J=1 L

n

prby jnag prby
sin sin sin
L L L

Equation (19) may be writien as

s wjp?, (19)

W="Wa+tWe (20)
where the term Wa is produced by the source

auto-correlation,
n N
Wa = 47L2S9/M28 = z
J.p=m [=J=1
jmaj pabi
sin?2 —— s5in2
L L

/ ijzo (20_3)
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and the term W¢ is produced by the source

cross-correlation. Thus,
n N jmay
We = 47L2So/M28 2 Z sin —
J.p=m IFJ L
paby jmajy prbg
sin ~ sin ~—— sin — / wjp?, (20-b)
L L

whére N is the number of applied forces.

4, Numerical results and discussion

In the present study attempts were made to
investigate the mean-square displacement
distribution of a plate and to determine an op-
timal spacing distance between input forces to
produce a relative minimum in the vibration level
under the excitation of band limited white noise
point forces. When all forces have identical
spectra, the mean-square response distribution
depends on the cross-correlations between the
forces.

In the present paper we consider structures
excited by two or more point forces whose time
histories are sample functions of wideband
random processed with known cross-correlations.
As has been proviously shown(@, the mean-
square response of such siructures is generally
quite uniform, except in certain regions. These
details of the response depend upon the number
of forces and their cross-correlations.

The mean-square displacement distribrtions
different values of the
correlation coefficient r: (1) r=1, (2)r=0, (3)r
=-1, These different cases were calculated in

order

were calculated for

to study the associated mean-square
displacement distributions,

In the numerical analysis a square aluminum
plate with dimensions of 60 inch X 60 inch and
thickness of 0.25 inch was chosen. Two and

four point forces were chosen and the excitation
was from ‘“white mnoise” using octave bands

centered at 500 Hez.

L7§'@:“ .
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The numerical result were used to comstruct
two dimensional contour maps to show the
mean-square response distributions of the plate.
The data in each case has been normalized so
that it appears in the range form 0 to +1.
The scaled data is identified through integral
contour labels, where label 1 corresponds to
the largest positive value (maximum) and label
3 corresponds to a zero value (minimum). As
usual, the density of the contour Ilines is
indicative of the local vibration level gradient.

The effects of multiple forces may be
introduced most simply by considering the case
2 and 3

examine thd effects of correlation between two

of two point forces. Figures [,
point forces when the excitation is an octave
band centered at 500 Hz. The locations of the
applied point\ forces are indicated using dark
dots, Figure 1, in the extreme case of complete
correlation (r=+1), shows that the mean-square
displacement is enforced in the neighborhood of
the drive points and their symmetric image
There
enhancement midway between the drive points

points. is some additional local

and at the middle point of the plate. Figure
2, for a pair of uncorrelated driving forces(r=
0), demonstrates a flattening of the mean-

Fig. 1 Mean-square displacement produced by two
point forces with correlation coefficeient
r=+1(octave band at 500 Hz)
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square response along the diagonal located be-
tween the two point forces and the enforced
mean-square displacement distribution in the
neighborhood of the two drive points. Figure
3, for the case r=-1 between forces, shows
that the diagomal located between the two point
forces seves as a reference line of zero mean-
square displacement. That is, one half of the
plate is seen to be the mirror image of the
other half.

CONTOUR VALUES

1 1 8.00EQ1

2 @ 4000E.01
3 : Q.0CCE+00

Fig. 2 Mean-square displacement produced by two
point forces with correlation coefficient r=
O(octave band at 500 Hz)

CONTOUR YALUES
1 : 1.0C0E-0f
1 : 40WE-ot
3 1 GO0COE00

Fig. 3 Mean-square displacement produced by two
point forces with correlation coefficient r=
-1(ocatave band at 500 Hz)

Figure 4 shows that the variation of the
correlation coefficient (-1<r<1) may change the

total mean-square vibration level W of the plate

by adding or subtracting the vibration level due
to the source cross-correlation, We. When the
driving forces are uncorrelated (r=0) the
vibration leval of the plate W reduces to a
superposition of the distributions which result
when each force acts alone. The vibration level
of the plate due to the source auio-correlation
has a constant value, the difference between
W and W. and is independent on the
correlation coefficient. In the extreme cases(r=
t1) the vibration level of the plate W is
increased or decreased linearly 19% compared
to the case when r is equal to zero.

0.05
T
i

————

Vibration level of the plate (inch)
0
. T v

1 L] .

-1 -0.5 0 0.5 1

Corrclation coefficient r
Fig. 4 Vibration level (mean-square displacement)
of the plate (--) and vibration level of
the plate due to the source cross-
correlation (—) versus the correlation
coefficient

It is also of interest to examine optimal
arrangements of point forces that produce
minima in the total plate response. A particualr
case was investigated in which four point forces
were located on the main diagonals of the
plate, at a radial spacing R®. The total plate
response was calculated for different r values
and the results are shown in figure 5. This
figure shows that an optimal force spacing
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exists to produce a relative minimum in the
vibration level, By adjusting the spatial distance
R between the applied forces the magnitude of
the vibration level of the plate shows a dra-
matic reduction, relative to its maximum value
when the point forces are located at the center
of the plate. The reason for this behavior will
be discussed in the following section by
considering the effects of wave cancellation in
This dis-
cussion will fake place in the time domain,
making use of the equivalence between certain
stationary random responses and deterministic

responses (),

the near-field of the applied forces.

(]

Vibration level of the plate (iach) x 103

— ] 1

5 10

15

Force spacing (K R=[pw Y/E{|'R)

Fig.5 Overall vibration level of the plate (---)
and the vibation level of the plated due
to the source cross-correlation (—) versus
the spacing distance of four positively
correlated(r=+1) random point forces.

5. Deterministic pulse response in time

domain

In the previous sections, solutions were

developed for the mean-square displacement of

a structure undergoing stationary vibration due

to a distributed stationary random excitation f(x,

y, t). This excitation was described by its
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space-time cross spectral density function St(x,
¥1, vz, As pointed out by Crandall @,
“for certain special forms of these functions

Xz, w).

there exist ‘equivalent’ deterministic force re-
sponse problems from which the mean-square
response in the random case can be inferred.”

This equivalence may be exploited to simplify
the numerical calculations. In the present study,
the equivalence relation is used to estimate the
stationary response of a structure using a modal
sum calculation of a deterministic force
response, _

The special form required of the space-time
cross-spectral density function S (%1, V1, X2, Vg,
w) is that it must factor in the following way®

Sr(x1,¥1,%2,¥2,90)=r(x1)r(y1)

r(x2)r(y2)s(w) (21)

where r(x) and r(y) and real functions and $
(w)
Using the spectral form (21) the mean-square

is the mean-square speciral density.

displacement (10) can be described as
o Lx Ly Lx Ly

E(W2(x,y)]= [ S(wde f° [ [ [
—a g 0 o0 o

r(EDr(n)r(Edr(nz) -H(x1,¥1,0iE1,71)
H*(x2,v2,05€2, 72 )dE1dnidEadns, (22)

Following Crandall®, it is possible to show
that a deterministic f{x, y, t) exists such that
the time integral of W2(x, y, t) is proportional
to Equation (22). .

Assume the exciatation to be of the form

£(x,y, t)=r(r(y)f(t) (23)
where f(t) is to be determined. The
displacement response to (23) is

Lx Ly
wix,y,t)= [ [ r(E)r(ndtdn
0 o0
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/ f(t‘T)h(X,Y,TT§,U)dT. (24)

R
The Fourier transform of the displacement re-
sponse (24) is

Lx Ly
W(x,y,@)=F(w) f [ r(Or(n)

[ ]
H(x,y,w; €, n)dEdn, (25)

The integral of the square of (25), after
interchanging the order of integration, can be
written in the frequency domain through use of

Parseval’s identity®

I W2(x,y,t)dt = 1/2z [ W(x,y,0)
W (x,y,wdo
@ Lx Ly Lx Ly
=1/2z f [F(@)F*W)ldw f [ [ f
- 9 0 o0 O
r(e)r(p)r(E2)r(nz) -HGx,y1, 081, 11 H*
(x2,y2,0;€2, n2)dE1dn1dE2dn2, (26)

Comparing (22) and (26) we see that the
equivalence relationship is

F(0)F*(w)/2nTe=5(w) (27)

where Tc is a constant of proportionality having
the dimension of time and F *(w) is the com-
plex conjugate of F(w). In the frequency
domain the selection of a deterministic excitation
F(w) that is equivalent to the given random
spectrum S(w) is made according to (27). We
consider the case where the force process is

band-limited white noise, i.e., where
Se, W {Jwiwz

5(w)= [
0, otherwise (28)

A solution to (27) is provided by

¥Y2nS0Te exp(—iwt')
0, otherwise,

(29)

wi{lol w2

F(u)=[

Consider several “equivalent” deterministic
forces applied to a simply supported square
plate. The equation of motion for the transverse
displacement W(x, y, t) is given by (1). The
transverse displacement W(x, v, t) is defined
as

® inx pry’
W(x,y,t)= I 7ip(t) sin — sin —
Jj.p=1 L L

(30)
Substituting (3) into (1), the equation of motion
(1) becomes

n5e(t) + Bnip(t) + 0ip2nip(t)

s £ip(t) (31)
N

where fip(t) =4/L2 Z fi(t)sin (jzai/L) sin (paby/L)
I=1
Initial conditions are

ni»(0)=0, n3p(0)=0. (32)

Applying the Duhamel's integral® to (31) we
obtain

exp(-Bt/2) = v

nip(t)= I exp(Bt’/2)
wd -
fip(t")
—— sin wa(t~t’)dt’ (33)
ph .

where wa 1s the frequnecy of damped

oscillation. Crandall obtained the equivalent
deterministic force fi(t}, the Fourier transform
of (29), where the force process is band-limited

white noise, 1.e.,

2 .
f1(t)= / 250T¢ [ sinc:)zt
4 t

sinogt’ ]
e

(34)

Substituting (33) into (30), the tiransverse
displacement of the plate is found
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n

Wi(x,y,t)= =
n phLz j.p=m
N Jmx pmy jmar prbr
Z sin s5in sin sin —
1=1 L L
exp(—6t/2) o sinwst’
—————— [ exp(-Bt’/2) —_—
Wd —o
sinot’
— ———— |sin ea(t-t")dt’, (35)
T

Equation (35) will be used o calculate the wave

propagation in the plate.

; 103z 220 e
Figures 6, 7 and 8 show the wave T §$§:§2§@? N
propagation in the plate for the octave band e S ”l;’."\g\\"wgnu—-_,..""'%' =

{ XX 2=
et g

centered at 500 Hz to demonstrate the effect
of wave cancellation in the near field of the
applied forces. Those Figures (6, 7 and 8) plot
the numerical results for the three cases
corresponding to changing force positions. The
positions of applied forces along the diagonals
are as follows: (a) located at center (R=0
inch), (b) located at corner (R=25 inch), (c)
located around the center of the plate (R=4
inch). Four sample times (0.0005, 0.001, 0.0015
and 0.002 second) were chosen in each figure
to compare the plate deflection by wave
propagation as time increases.

Figure 6 shows wave propagation for the
concentrated forces at the center of the plate.
At time 1=0.0005 second, in Figure 6(a), the @

plate is seen to be at rest except near the .-653:?:;‘;""5-""

o . . 103 x 220 SRR A LR LRT
positions of the applied forces. As time goes \77 SN I
035 | e e R
by, waves propagates toward the edges of the 050 5% = L AN ot

T R
. . . %:\-.-ﬁ, TAL )
plate and entire plate vibrates. Figure 7 shows L00 R I IXX

a similar behavior, although for this case, the
force posi_tions were located at the corners.

Waves propagate from the corners to the center 000

of the plate. The whole plate eventually vibrates Fig.6 Wave propagation for the force spacing
as in Figure 6. Figure 8 shows a reduction in R=0 inch resulting form deterministic point
the vibration level due to the effects of wave forces

cancellation in the near fields of the applied {a) t=0.0005 second (b) t=0.001 second
forces, relative to the provious two cases. (c) t=0.0015 second (d) t=0.002 second

174
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)
z (&)

3 z g.::

1079 x 220 anate

1.27 103 x 220 ==
035 = 127
030 ARazans 035
-1.50 e 00
1.00 = 1.00 -1350

1.00
0757} T 073 100
050 0.50 0.75 3 K 2 078
oo 025 0.5¢ 0350
vt 028 025
‘ 0.00

T

1073 1 2.20
A e
035 b ran
-0.50 ."':J%:Er‘:és:v'o‘..
%...:; &.: e a el

i = e

1.00
16-3 x 2.20
1.27
035 -
050
-130
1.00
Fig.7 Wave propagation for the force spacing Fig.8 Wave propagation for the force spacing
R=25 inch resulting form four R=4 inch resulting from four deterministic
deterministic point forces point forces
(a) t=0.0005 second (b) t=0.001 second (a) t=0.0005 second (b) t=0.001 second
{c) t=0.0015 second (d) t=0.002 second {c) t=0.0015 second (d) t=0.002 second
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6. conclusion

It has been found in this study that the
spatial distributions of multiple correlated point
forces have significant influences on the
vibration level of plates. In the case of a plate
excited by band-limited white noise, the spatial
distance between the applied forces causes
changes in the vibration level of the plate. The
specific case investigated consisted of a finite
square plate, and four point forces, For a
given excitation band, there was found an op-
timal spacing distance of the applied forces
which leads to a relative minimum in the

vibration level of the plate. The physical
mechanism responsible was found to be the
wave cancellation in the near fields of the ap-

plied forces.
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