• Title/Summary/Keyword: Vibration mode shape

Search Result 600, Processing Time 0.024 seconds

A Study on the Dynamic Characteristics of Turbine due to the Stiffness of Bearing-Pedestal (베어링-지지구조물의 영향에 따른 터빈의 동특성 변화)

  • Kim, Hee-Soo;Bae, Yong-Chae;Kim, Yeon-Whan;Lee, Hyun;Kim, Sung-Hwi;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1871-1874
    • /
    • 2000
  • It is impossible to predict accurately the dynamic behavior of turbine-generator system because bearing, and rotor characteristics are nonlinear and different from temperature, load, operation speed and bearing lubricant oil property. Especially, the characteristics of turbine hoods affect much the entire vibration characteristics of turbine. As the dynamic stiffness of turbine hoods are changed, the critical speeds of rotor are shifted. In this paper, the vibration behavior of turbine-generator is analyzed by using component mode synthesis and the critical speeds measured during shut-down are compared with the analytic results. It is confirmed that the 1st natural frequency and the mode shape are well in agreement with actual measured data.

  • PDF

Rotating Shaft Vibration Analysis of 200 kW, 15,000 rpm 3 Phase Induction Motor (200 kW급 15,000 rpm 3상 유도전동기의 회전축 진동해석)

  • Hong, D.K.;Koo, D.H.;Woo, B.C.;Hong, S.S.;Kwon, Y.S.;Kang, H.C.;Ahn, C.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.262-265
    • /
    • 2006
  • The purpose of this study is to design 200 kW, 15,000 rpm 3 phase induction motor. This research deals with natural frequency and mode shape of rotating shaft of 3 phase induction motor with bearing stiffness by finite element analysis. We present natural frequency characteristic variation of rotating shaft according to change bearing stiffness. Also we are verified stability of rotating shaft from backward and forward critical speed by campbell diagram.

  • PDF

Modal Damping of the Flexural Vibration of a Sandwich Beam with Partially Inserted Viscoelastic Layer (점탄성층이 부분적으로 삽입된 샌드위치보의 횡진동모드별 감쇠특성)

  • 박진택;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.224-227
    • /
    • 2000
  • Modal damping characteristics of the flexural vibration of a sandwich beam with paaially inserted viscoelastic layer have been quantitatively studied using the finite element analysis in combination with an experiment. Antisymmetric mode shapes of the flexural vibration were visualized by the holographic interferometry and agreed with those calculated by the finite element simulation. Effects of the length and thickness of partial viscoelastic layers on the system loss factor($\mu$) and resonant frequency($\omega$) were considerably latge at both symmetric and antisymmetric modes of the sandwich beam.

  • PDF

Flexural free vibration of cantilevered structures of variable stiffness and mass

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.243-256
    • /
    • 1999
  • Using appropriate transformations, the differential equation for flexural free vibration of a cantilever bar with variably distributed mass and stiffness is reduced to a Bessel's equation or an ordinary differential equation with constant coefficients by selecting suitable expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. The general solutions for flexural free vibration of one-step bar with variable cross-section are derived and used to obtain the frequency equation of multi-step cantilever bars. The new exact approach is presented which combines the transfer matrix method and closed form solutions of one step bars. Two numerical examples demonstrate that the calculated natural frequencies and mode shapes of a 27-storey building and a television transmission tower are in good agreement with the corresponding experimental data. It is also shown through the numerical examples that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall buildings and high-rise structures.

Torsional Vibration Characteristics of Nonuniform Circular Rods (불균일 원형 봉의 비틀림 진동 특성)

  • 정형곤;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.609-616
    • /
    • 2001
  • The vibrational characteristics of nonuniform circular rods have been studied theoretically and experimentally in this paper. The differential equation of torsional motion expressed in terms of the angular displacement has been solved exactly and approximately for a stepped circular rod and for a conically-tapered rod. Solutions of the boundary-value problem have yielded the natural frequencies, mode shapes and forced responses of the rods. The theoretical solutions of forced response have been verified by comparing them with experimental ones.

  • PDF

Free Vibration Analysis of Clamped-Free Circular Cylindrical Shells with Plate Attached at Arbitrary Axial Positions (원판이 결합된 외팔 원통셀의 고유진동 특성해석)

  • 임정식;이영신;손동성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.237-242
    • /
    • 1996
  • A theoretical formulation for the analysis of free vibration of clamped-free cylindrical shells with plates attached at arbitrary axial positions was derived and it was programed to get the numerical results which yield natural frequencies and mode shape of the combined system of plate and shells. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS as well as modal test in order to validate the formulation. The effects of the thickness and location of the plate were evaluated.

  • PDF

Effect Investigation of Resonance by Harmonic Components on Structures with Velocity Seismoprobes in a Turbine Rotor System (속도계가 부착된 구조물에서 조화성분의 공진이 미치는 영향 고찰)

  • Yang, Kyeong-Hyeon;Cho, Chul-Whan;Bae, Chun-Hee;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.98-102
    • /
    • 2005
  • Most bearing casings are designed to focus on strength and weight of themselves because rotor speed passes through the critical speed when operation begins in large plants such as power plants. And It is treated importantly the relation between rotating frequency of the rotor and the natural frequency of casings to prevent resonance. But there is some cases that it is overlooked for harmonic components above rotating frequency. So we present experimentally a case that harmonic forces may make a resonance on casing fixing probes to measure vibration in a turbine-generator system and the vibration is generated when one component of harmonic forces excites the mode that the natural frequency of a certain bearing casing is close to one of harmonics of basic rotating frequency (1x).

  • PDF

Dynamic Analysis and Optimum Design of Suspensions for Information Storage Devices (정보저장기기 서스펜션의 동특성 해석 및 최적설계)

  • Kim, Yun-Sik;Lee, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.576-581
    • /
    • 2002
  • The suspension is a structure that supports reading, writing head in information storage device. In order to develop the information storage device of high track density, it is necessary to study about the suspension. To satisfy operation condition of information storage device, the suspension shape is very important since it correlates to dynamic characteristics. Therefore, it is necessary to analyze the dynamic characteristics by using finite element analysis and to optimize the suspension of information storage device using size optimization and topology optimization. The suspension has various modes according to different kinds of frequency bandwidth. Sway mode and second torsion mode are especially critical among them. In this paper, we investigated method to improve bandwidth of sway and second torsion mode of HDD and ODD suspension by using size optimization and topology optimization.

  • PDF

Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors (유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석)

  • 최형진;백영인;이학은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

Beat Map Drawing Method for a Large Size Bell using ODS (ODS를 이용한 대형종의 맥놀이 지도 작성법)

  • Park, In-Seok;Lee, Jung-Hyeok;Park, Sun-Mi;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.929-932
    • /
    • 2012
  • Beat map shows the distribution property of the beating sound in the bell structure. Using the beat map, beat control and beat estimation are available. To draw the beat map, mode pair parameters of the bell are required. However, in case of large bell which is struck by a heavy wooden hammer, it is very difficult to measure the excitation force and to obtain the mode pair parameters. In this paper, we determined the mode pair parameters of the bell from the transmissibility between the roving signal and reference signal, using ODS(operational deflection shape) method. The mode pair data are input to the theoretical model of the beat response and beating waves are generated on the bell circumference. All the numerical and beat map drawing procedures are automatized using Matlab. Finally, the reliability of the beat map generated by the program is verified.

  • PDF