• Title/Summary/Keyword: Vibration mode shape

Search Result 600, Processing Time 0.026 seconds

An Analysis of the Mask Vibration Considering the Damping Wire (와이어와의 접촉을 고려한 마스크의 진동 해석)

  • 유세준;신운서;장보웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.203-208
    • /
    • 2000
  • The vibration of a mask degrades the color purity in CRT Therefore, a damping wire is put into contact with the mask to reduce the vibration in perfectly flat CRT. In this study, we analyzed the vibration of the mask contacting with the damping wire using FEM. First we calculated the natural frequencies and mode shapes of the mask by modal analysis, and compared them with the measured results to confirm our finite element model. The modal analysis of the wire was also performed to investigate resonance with the mask. Finally, the transient dynamic analysis of the mask contacting with the wire was performed. The vibration of the mask was measured to confirm our analysis, and the results are in good agreement with the analysis.

  • PDF

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.

Vibration Analysis of Two Annular Plates Coupled with a Fluid (유체로 연성된 두 환형평판의 진동해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.906-910
    • /
    • 2004
  • An analytical method for the free vibration of two annular plates coupled with water was developed by the Rayleigh-Ritz method. The two plates with unequal thickness are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the annular plates Is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

Free Vibration Characteristics of the Steel and GFRP Composite Cylindrical Shells with Simply Supported Conditions (단순지지된 Steel 및 GFRP 복합재료 원통셸의 자유진동 특성)

  • 이영신;최명환;신도섭
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.273-284
    • /
    • 1999
  • The cylindrical shells are used as primary components of complex structures such as airplane fuselages and nuclear pressure vessels. Recently the free vibration analysis of these structures are investigated by many researchers. The engineering informations on experimental validation of the free vibration behavior on the simply supported cylindrical shells are very few. The experimental methods for realizing the physical boundary condition of simply supported edges are examined. Natural frequencies and mode shapes of the isotropic and plain weave composite simply supported shells are obtained by modal tests. A theoretical and finite element analysis are also performed in order to validate the experimental results. The experimental results indicate that the simply supported boundary conditions with bolts along the circumferential direction of shell in both ends are well achieved. Those are shown to agree with the analytical results and with the finite element analysis results. These methods can be used to realize other experimental simple support boundary conditions.

  • PDF

Linear Stability Analysis of a Rotating Disc Brake for Squeal Noise (회전 디스크 브레이크의 스퀼소음에 대한 선형안정성 연구)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1092-1098
    • /
    • 2009
  • The squeal propensity of an automotive disc brake system is studied in the theoretical and computational manner. The rotating disc is in contact with two stationary pads and the nonlinear friction is engaged on the contact surface. The friction-coupled equations of motion are derived in the finite element(FE) of the actual brake disc and pad. From the general definition of friction force, the rotation and in-plane mode effects can be included properly in the brake squeal model. The eigenvalue sensitivity analysis and the mode shape visualization at squeal frequencies are also conducted for the detailed investigation. It is found that the squeal propensity is strongly influenced by rotation effect and the in-plane mode can be involved in squeal generation.

A Study on Reducing Rolling Mode Effect in High-Sensitivity Optical Pickup 3-axis Actuator (고감도 3축구동 액츄에이터를 위한 Rolling Mode 저감 연구)

  • 김영중;홍삼열;김진아;최인호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.775-779
    • /
    • 2003
  • Recently, a new type actuator using multi-pole magnet has been developed for high-density and high-speed disk drive, which can be achieved higher sensitivity than a conventional actuator for applying one-pole magnet. However, it is very difficult for the actuator of multi-pole magnet to meet simultaneously the optimal design condition for reducing rolling mode effect and improving driving sensitivity because the force center is different from the mass center In this paper, First We propose the new shape coil for tracking which can reverse moment additionally in tracking motion, Next we achieve the optimal design to reduce phase disturbance and peak gain at the rolling mode frequency. Finally, the validity of the proposed methods is proved from experimental results.

  • PDF

Image Noise Reduction Using Structural Mode Shaping for Scanning Electron Microscopy

  • Hamochi, Mitsuru;Wakui, Shinji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • In a scanning electron microscope (SEM), outside acoustic noise causes image noise that distorts observations of the specimen being examined. A SEM that is less sensitive to acoustic noise is highly desirable. This paper investigates the image noise problem by addressing the mode shapes of the base plate and the transmission path of the acoustic noise and vibration. By arranging the position of the rib, a new SEM base plate was developed that had twisting as the 1st and 2nd modes. In those two twisting modes, vibration nodes existed near the center of the base plate where the specimen chamber is placed. Less vibration was transmitted to the chamber and to the specimen by the twisting modes compared to bending ones, which are the 2nd and 3rd modes for a rectangular plain base plate. An SEM with the developed base plate installed exhibited a significant reduction of image noise when exposed to acoustic noises below 250 Hz.

Free Vibrations of Tapered Beams with Static Deflection due to Self-Weight (자중에 의한 정적 처짐을 고려한 변단면 보의 자유진동)

  • 이병구;이태은;안대순;김영일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.423-428
    • /
    • 2002
  • A numerical method is presented to obtain natural frequencies and mode shapes of tapered beams with static deflections due to self-weight. The differential equation governing the free vibrations of beam taken into account the static deflection due to self-weight is derived and solved numerically. The hinged-hinged, clamped-clamped and clamped-hinged and clamped-free end constraints are applied in the numerical examples. As the numerical results, the lowest three natural frequencies versus distributed slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with the effects of static deflection are presented in figures.

  • PDF

Stability analysis of deepwater compliant vertical access riser about parametric excitation

  • Lou, Min;Hu, Ping;Qi, Xiaoliang;Li, Hongwei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.688-698
    • /
    • 2019
  • If heave motion in the platform causes horizontal parametric vibration of a Compliant Vertical Access Riser (CVAR), the riser may become unstable. A combination of riser parameters lies in the unstable region aggravates vibrational damage to the riser. Change of axial tensile stress in the riser combined with its natural frequency and mode shape change results in mode coupling. In accordance with the state transition matrices of the riser in the coupled and uncoupled states, the stable and unstable regions were obtained by Floquet theory, and the vibration response under different conditions was obtained. The parametric excitation of the CVAR is shown to occur mainly in first-order unstable regions. Mode coupling may cause parametric excitation in the least stable regions. Damping reduces the extent of unstable regions to a certain extent.

Fretting-wear Characteristics of Steam Generator Helical Tubes (증기발생기 나선형 전열관의 프레팅 마모 특성)

  • Jong Chull Jo;Woong Sik Kim;Hho Jung Kim;Tae Hyung Kim;Myung Jo Jhung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.327-335
    • /
    • 2004
  • This study investigates the safety assessment of the potential for fretting-wear damages caused by foreign object in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for the helical type tubes with various conditions. The wear rate of helical type tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the external pressure on the vibration and fretting-wear characteristics of the tube.