• 제목/요약/키워드: Vibration mode shape

검색결과 599건 처리시간 0.036초

Transverse earthquake-induced forces in continuous bridges

  • Armouti, Nazzal S.
    • Structural Engineering and Mechanics
    • /
    • 제14권6호
    • /
    • pp.733-738
    • /
    • 2002
  • A simplified rational method is developed to evaluate transverse earthquake-induced forces in continuous bridges. This method models the bridge as a beam on elastic foundation, and assumes a sinusoidal curve for both vibration mode shape and deflected shape in the transverse direction. The principle of minimum total potential is used to calculate the displacements and the earthquake-induced forces in the transverse direction. This method is concise and easy to apply, and hence, offers an attractive alternative to a lengthy and time consuming three dimensional modeling of the bridge as given by AASHTO under its Single Mode Spectral Analysis Method.

압전재료와 형상기억합금을 이용한 형상제어 (Shape Control using Piezoelectric Materials and Shape Memory Alloy)

  • 박현철;황운봉;오진택;배성민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1311-1320
    • /
    • 2000
  • In this study, shape memory alloy(SMA) wires and piezoceramic actuators(PZT's) are employed in order to generate higher modes on the beam deformations. Compressive force is generated and applied to the beam by the pre-strained SMA wires attached at both ends of the beam. PZT's apply concentrated moments to several locations on the beam. Combinations of the compressive force and concentrated moments are investigated in order to understand the higher-mode deformation of beams. The first desired mode shape is obtained by controlling the temperature of the SMA wires. The first and third mode shapes are performed experimentally by heating SMA wires up to phase transformation temperature. The adaptive wing is defined as a wing whose shape parameters such as the camber, wing twist and thickness can be varied in order to change the wing shape for various flight conditions. In this research, control of the camber has been studied. The wing model consists of three plates and many ribs. Two of the plates are placed parallel to each other and they are clamped at one edge. Third plate connects the other edges of the parallel plates together. Each rib is made of SMA wire and connected to the parallel plates. It generates concentrated force and applies to the plates in oblique directions. The PZT's are bonded onto the plates and exert concentrated moments upon the plate at several locations. The object of this research is to generate various shape of wing by combining the concentrated forces and moments.

  • PDF

경수로 연료봉을 지지하는 5×5 지지격자체의 자유진동특성 (Free Vibration Characteristics of 5 × 5 Spacer Grid Assembly Supporting the PWR Fuel Rod)

  • 강흥석;윤경호;송기남;최명환
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.512-519
    • /
    • 2004
  • This paper described the free vibration characteristics of Optimized H Type (OHT) spacer grids (SG) supporting the PWR fuel rod. The vibration test and the finite element (FE) analysis are performed under the free boundary condition and the clamped at two points (or three points) in the bottom which is the same one as the experimental condition for the dummy rod continuously supported by spacer grids. A modal test is conducted by the impulse excitation method using an impulse hammer and an accelerometer, and the TDAS module of the I-DEAS software is used to acquire and analyze the sensor signals. The softwares related to the FE analysis are the I-DEAS for the geometrical shape modeling and meshing, and the ABAQUS for solving. The fundamental frequency of the OHT SG by experiment under a clamped condition at two points is 175.18 Hz, and shows a bending mode. We think there is no resonance between the fuel rod and the SG because the SG's frequency is higher than that of the fuel rod existing in the range from 30 to 120 Hz. The fundamental frequency of the SG under the free boundary condition is 349.2 Hz showing a bending mode, and the results between the test and the analysis have a good agreement with maximum 7 % in error It is also found that the FE analysis model of the OHT SGs to analyze an impact, a buckling and vibration et al. has been generated with reliability.

유전 알고리듬을 이용한 압전센서의 전극형상 최적화 (Electrode Shape Optimization of Piezo Sensors Using Genetic Algorithm)

  • 이기문;박현철;박철휴
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.698-704
    • /
    • 2006
  • This paper presents an electrode shape design method for the multi-mode sensors that could deteict the selected structural multiple modes. The structure used for this study is an isotropic cantilever beam type with a PVDF (polyvinylidene fluoride) which is bonded onto the structure as a sensor. The shape optimization problem is solved by using Genetic Algorithm (GA) with an appropriate objective function. The performance of analytical optimal shape sensor is compared with that of experimental work. The results show that the, obtained electrode shape sensors have good performance to detect the multiple vibration modes simultaneously.

환형평판과 원판으로 구성된 유체용기의 고유진동 해석 (Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates)

  • 정경훈;김종인;박근배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.295-300
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

환형평판과 원판으로 구성된 유체용기의 고유진동 해석 (Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates)

  • 정경훈;김종인;박진석
    • 한국소음진동공학회논문집
    • /
    • 제15권8호
    • /
    • pp.968-974
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

양면에서 부분적으로 유체와 접하는 사각평판의 고유진동 (Free Vibration of a Rectangular Plate Partially in Contact with a Liquid at Both Sides)

  • 정경훈;이규만;김태완
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.42-47
    • /
    • 2007
  • An analytical method for the free vibration of a flexible rectangular plate in contact with water is developed by the Rayleigh.Ritz method. The plate clamped along the edges is partially contacted with water at both sides. It is assumed that the water bounded by rigid walls is incompressible and inviscid. The wet mode shape of the plate is assumed as a combination of the dry mode shapes of a clamped beam. The liquid motion is described by using the liquid displacement potential and determined by using the compatibility conditions along the liquid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict excellently the fluid.coupled natural frequencies comparing with the finite element analysis result.

  • PDF

유체로 연성되고 크기가 다른 두 원판의 진동해석 (Vibration Analysis of Two Unequal Circular Plates Coupled with a Fluid)

  • 정경훈;최순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.258-262
    • /
    • 2004
  • An analytical method for the free vibration of two circular plates coupled with a fluid was developed by the Rayleigh-Ritz method. The two plates with unequal thickness and diameter are clamped along the cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the circular plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives a eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies with excellent accuracy comparing with the finite element analysis result.

  • PDF