• Title/Summary/Keyword: Vibration estimation

Search Result 900, Processing Time 0.03 seconds

Estimation of Uncertainty in Vibration Measurement of Shipboard Equipment (함정탑재장비 진동 측정불확도 추정)

  • Park, Sungho;Lee, KyungHyun;Han, HyungSuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.509-516
    • /
    • 2014
  • This paper proposes estimation model of uncertainty in vibration measurement of shipboard equipment and analyzes the result of uncertainty estimation. Vibration of shipboard equipments affects underwater radiated noise that is important performance related to stealth of the naval vessel. Acceptance testing for shipboard equipment is required to guarantee the stealth performance of naval vessel. In measuring, detailed uncertainty estimation is essential to improve measuring reliability. Acceptance testing result of structure-borne noise and vibration is used to analyze uncertainty in vibration measurement of shipboard equipment.

Vibration Characteristics and Prediction of Railroad Track Supporting Structures (궤도지지구조물의 진동특성과 예측)

  • 황선근;엄기영;고태훈
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.51-61
    • /
    • 2000
  • In this study, field measurements of vibration on the structures supporting railroad track were performed. The vibration data obtained were analyzed to find out any correlation between its magnitude and several factors such as type of bridges, distance from the track, type of train, frequency characteristics, etc. As a result, the magnitude of vibration turned out to be the highest in the steel bridge, the concrete bridge and steel-concrete combined bridge were the next in descending order. It was also found that the dynamic characteristics of ground were the most important factors among several affecting vibration near by the railroad track. And the empirical ground vibration estimation equation for estimating ground vibration was developed. The proposed equation with respect to distances from the railroad could be easily used for the estimation of ground vibration at the residential areas nearby the track.

  • PDF

Estimation of Vibration Field of a Cylindrical Structure Derived by Optimal Sensor Placement Methods (센서최적배치 기법에 의한 원통형 구조물의 진동장 예측)

  • Jung, Byung-Kyoo;Jeong, Weui-Bong;Cho, Dae-Seung;Kim, Kookhyun;Kang, Myeonghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.381-389
    • /
    • 2014
  • This study is concerned with the estimation of vibration-field of a cylindrical structure by modal expansion method(MEM). MEM is a technique that identifies modal participation factors using some of vibration signals and natural modes of the structure: The selection of sensor locations has a big influence on predicted vibration results. Therefore, this paper deals with four optimal sensor placement( OSP) methods, EFI, EFI-DPR, EVP, AutoMAC, for the estimation of vibration field. It also finds optimal sensor locations of the cylindrical structure by each OSP method and then performs MEMs. Predicted vibration results compared with reference ones obtained by forced response analysis. The standard deviations of errors between reference and predicted results were also calculated. It is utilized to select the most suitable OSP method for estimation of vibration field of the cylindrical structure.

Estimation of Vibration Level Inside an Engine Based on Rigid Body Theory and Measurement Technology (강체 운동 해석 및 실험을 통한 엔진 내부 진동 예측에 관한 연구)

  • Kim, Byung-Hyun;Park, Jong-Ho;Kim, Eui-Yeol;Lee, Sang-Kwon;Kim, Tae-Jeong;Heo, Jeong-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1043-1050
    • /
    • 2011
  • This paper presents practical results for the estimation of vibration level inside a powertrain based on the rigid body theory and measurement. The vibration level of inside powertrain has been used for the calculation of excitation force of an engine indirectly. However it was difficult to estimate or measure the vibration level inside of a powertrain when a powertrain works on the driving condition of a vehicle. To do this work, the rigid body theory is employed. At the first, the vibration on the surface of a powertrain is measured and its results are secondly used for the estimation the vibration level inside of powertrain together with rigid body theory. Also did research on how to decrease the error rate when the rigid body theory is applied. This method is successfully applied to the estimation of the vibration level on arbitrary point of powertrain on the driving condition at the road.

Determination of the Frequency Weighting Curves for the Estimation of Discomfort by the Steering Wheel Vibration (조향휠 진동의 안락성 평가를 위한 주파수 가중치 곡선 결정)

  • 홍석인;장한기;김승한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1048-1052
    • /
    • 2003
  • This study aims to derive frequency weighting curves for the estimation of driver's discomfort by steering wheel vibration in the vertical and rotational direction with respect to a steering column. Subjective tests for the determination of equal sensation curves, inverse of frequency weighting curves, for the two kinds of vibrations were performed using the sinusoidal signals with reference amplitudes from 0.2m/s$^2$ to 0.4 m/s$^2$ in the frequency range from 5㎐ to 100㎐. Twelve subjects joined at the tests, and median values of the twelve judgments were used to determine the frequency weighting curves. Second experiment was followed to determine relative magnitude between the two frequency weighting curves by direct comparison of discomfort due to the two kinds of vibrations at 50㎐, which showed discomfort by the rotational vibration was 1.5 times of that by the vertical vibration.

  • PDF

A Tracking Vibration Estimation System Using a Genetic Algorithm (유전자 알고리즘을 이용한 트랙킹 진동량 추정 시스템)

  • Jin, Kyoung-Bog;Lee, Moon-Noh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2011
  • This paper presents a tracking vibration estimation system of the track-following system using a tracking loop gain adjustment algorithm and a genetic algorithm. The algorithms are introduced to estimate accurately the tracking vibration quantity in spite of the uncertainties of the tracking actuator. An estimated actuator model can be found by applying a genetic algorithm. Accordingly, the tracking vibration quantity can be estimated from the measured tracking error, the tracking controller and the estimated actuator model. The proposed tracking vibration estimation method is applied to the track-following system of an optical recording device and is evaluated through the experimental result.

Influence of Sample Number on the Estimation of Blasting Coefficients and Limit Scaled Distance (측정수가 발파계수와 허용환산거리의 산정에 미치는 영향)

  • 양형식;전양수;정지문
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.814-820
    • /
    • 1998
  • Vibration data from two blasting sites were analyzed to determine the sufficient sample number for blasting vibration estimation. Most important result is that much more than 30 sample data and succeeding measurement are necessary to estimate confident blasting vibration level and to determine limit scaled distance.

  • PDF

Study on Some Problems in the Measurement and Estimation of 6 Degree of Freedom Head Vibration in Very Low Frequency Range (극 저주파 범위에서의 인체 머리부 6자유도 진동 측정 및 추정시의 문제점에 대한 연구)

  • 이정훈;고홍석;김광준;장한기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.621-626
    • /
    • 2002
  • Two problems in the measurement of 6-DOF head vibration in very low frequency range were investigated in this study. One is how much error was involved in the estimation of three rotational and three translational motion at any specified point from measured 6 translational accelerations. The other is quantitative and qualitative influence of gravity on DC and AC component of the estimated accelerations in 6 degree of freedom, which were derived from pick-ups fixed on a helmet. In the study the effect of nonlinear terms on the estimation of 6 degree of freedom accelerations was negligible but gravity effect must be considered carefully.

  • PDF

Estimation of Tracking Vibration Quantity for an Optimal Tracking Controller Design (최적 트랙킹 제어기 설계를 위한 트랙킹 진동량 추정)

  • Lee, Moon-Noh;Jin, Kyoung-Bog;Lee, Jong-KeuK
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.578-585
    • /
    • 2005
  • In this paper, we present a schematic method estimating the tracking vibration quantity occurring in the track-following system of an optical recording device. A tracking loop gain adjustment algorithm is introduced to estimate accurately the tracking vibration quantity in spite of the uncertainties of the tracking actuator, Accordingly, the tracking vibration quantity can be estimated from the tracking error, the controller output, the nominal actuator model, and a compensated gain. An optimal tracking controller can be designed from a minimum tracking open-loop gain calculated by the estimated tracking vibration quantity The proposed vibration quantity estimation and controller design method are applied to the track-following system of an optical recording device and are evaluated through the experimental result.

A Study on Estimation of Coefficient Using Wavelet Transform and Its Application to the Evaluation of Harshness in Passenger Car (웨이브렛 해석을 이용한 승용차의 충격 하쉬니스 개선)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1710-1715
    • /
    • 2000
  • Estimation of damping ratio for vibration signals measured on the passenger car's seat is useful for the objective evaluation of impact harshness in car. The vibration signal is a transient signal represented by many coupled modes of suspension system. Wavelet transform automatically decouples these modes in the time-frequency domain. Damping ratios for decoupled modes are obtained by logarithmic treatment for the Wavelet transformed signal. The objective evaluation using Wavelet transform has been well corresponded with subjective evaluation done by skilled engineers.

  • PDF