• 제목/요약/키워드: Vibration behavior

검색결과 1,629건 처리시간 0.034초

가진 하부시스템의 유한 모빌리티를 고려한 연성 보의 SEA 적용 (SEA of Coupled Beams considering Finite Mobility of Excited Subsystem)

  • 임종윤;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.79-83
    • /
    • 2005
  • SEA is a useful tool to predict noise and vibration response in high frequency region but has a weak point not to be able to express modal behavior in low frequency region. For a structure with middle subsystem having relatively higher modal density than excited subsystem and receiving subsystem, we studied the possibility that the modal behavior of receiving subsystem can express by considering finite mobility of excited subsystem. For a simply three-coupled beams which is chosen for feasibility study, the response of receiving beam was investigated with varying the length & area moment of inertia of middle beam. In case that the middle beam has relatively higher modal density than exciting beam, the application to finite mobility of excited beam led to express modal behavior of receiving beam relatively well.

  • PDF

Vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core: Analytical and experiment study

  • Boussoufi, Aicha;Errouane, Lahouaria;Sereir, Zouaoui;Antunes, Jose V.;Debut, Vincent
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.169-193
    • /
    • 2022
  • By the present paper, both experimental and analytical models have been proposed to study the vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core. For a variable mass fraction of Alfa fibers from 5% to 15%, impregnated in a Medapoxy STR resin, this panel were manufactured by molding the orthogonally stiffened core then attached it with both skins. Using simply supported boundary conditions, a free vibration test was carried out using an impact hammer for predicting the natural frequencies, the mode shapes and the damping coefficient versus the fibers content. In addition, an analytical model based on the Higher order Shear Deformation Theory (HSDT) was developed to predict natural frequencies and the mode shapes according to Navier's solution. From the experimental test, we have found that the frequency increases with the increase in the mass fraction of the fibers until 10%. Beyond this fraction, the frequencies give relatively lower values. For the analytical model, variation of the natural frequencies increased considerably with side-to-thickness ratio (a/H) and equivalent thickness of the core to thickness of the face (hs/h). We concluded that, the vibration behavior was significantly influenced by geometrical and mechanical properties of the partially bio-sourced sandwich panel.

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

두 이동질량이 단순지지 유체유동 파이프의 동특성에 미치는 영향 (Influence of Two Moving Masses on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid Flow)

  • 윤한익;임순홍;유진석
    • 한국소음진동공학회논문집
    • /
    • 제13권8호
    • /
    • pp.605-611
    • /
    • 2003
  • A simply supported pipe conveying fluid and two moving masses upon it constitute this nitration system. The equation of motion is derived by using Lagrange's equation. The influence of the velocities of two moving masses, the distance between two moving masses, and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid flow are considered with in its critical values of a simply supported pipe without moving masses upon It. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. As the velocity of two moving masses increases, the deflection of a simply supported pipe is increased and the frequency of transverse vibration of a simply supported pipe is not varied. In case of small distance between two masses, the maximum deflection of the pipe occur when the front mass arrive at midspan. Otherwise as the distance get larger, the position of the front masses where midspan deflection is maximum moves beyond the midpoint of a simply supported pipe. The deflection of a simply supported pipe is increased by coupling of the velocities of moving masses and fluid flow.

지중발파에 의한 건물의 진동 거동에 관한 연구 (A Study on the Vibration Behavior of Building Structures due to Undergroud Blasting)

  • 조병윤;문형구
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.157-165
    • /
    • 1996
  • In order to analyze the effects of ground vibration caused by underground blasting having an effect on structure, the particle velocity and acceleration are calculated by using DYNPAK program. The DYNPAK program analyzes nonlinear transient dynamic problem and adopts the very popular and easily implemented, explicit, central difference scheme. In this program, the material behavior is assumed to be elasto-viscoplastic. Using the particle acceleration history, modal analysis method is applied to the forced vibration response of multiple-degree-of-freedom(MDOF) systems using unclupled equations of motion expressed in terms of the system's natural circular frequencies and modal damping factors. AS a means of evaluating the vibration behavior of building structure subjected to underground blasting, the time response of the displacements relative to the ground of five-story building is determined. It is concluded that the amount of explosives consumed per round, the location of structure, the properties of rock medium, the stiffness fo structure, etc. act on the important factors influencing on the safety of building and that the response of a structure subjected to a forced excitation can usually be obtained with reasonable accuracy by the modal analysis of only a few mode of the lower frequencies of the system.

  • PDF

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

공간곡선 벡터에 의한 원통 코일 스프링의 동적 거동 해석 (Dynamic Behavior Analysis of a Helical Coil Spring Using Space Curve Vector)

  • 김대원;김종수
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1015-1022
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of a helical coil spring subjected to dynamic behavior using space curve vector after considering elongation rate. Vibrations in helical coil spring can be divided into 3 modes such as vibrations of coil spring center axis' vertical direction. axis' horizontal direction, direction about center axis. However. these 3 modes are dependent one another and are characterized as coupled. The dependency was proved through both theoretically and experimentally analyzing the results of dynamic characteristics of coil spring center axis' vertical direction vibration by transfer matrix method using the governing equation of static equilibrium. Also this paper shows that pitch angle and active coils in coil spring affect the dynamic spring characteristics of the above 3 modes and are especially sensitive to the mode for vibration of axis' horizontal direction which most affects especially on dynamo stability of helical coil spring.

  • PDF