Browse > Article
http://dx.doi.org/10.12989/aas.2022.9.3.169

Vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core: Analytical and experiment study  

Boussoufi, Aicha (Laboratoire Structures des Composites et MateriauxInnovants, Department of Marine Engineering, University of Science and Technology of Oran)
Errouane, Lahouaria (Laboratoire Structures des Composites et MateriauxInnovants, Department of Marine Engineering, University of Science and Technology of Oran)
Sereir, Zouaoui (Laboratoire Structures des Composites et MateriauxInnovants, Department of Marine Engineering, University of Science and Technology of Oran)
Antunes, Jose V. (Applied Dynamics Laboratory, Instituto Technologico e Nuclear, ITN/ADL)
Debut, Vincent (Applied Dynamics Laboratory, Instituto Technologico e Nuclear, ITN/ADL)
Publication Information
Advances in aircraft and spacecraft science / v.9, no.3, 2022 , pp. 169-193 More about this Journal
Abstract
By the present paper, both experimental and analytical models have been proposed to study the vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core. For a variable mass fraction of Alfa fibers from 5% to 15%, impregnated in a Medapoxy STR resin, this panel were manufactured by molding the orthogonally stiffened core then attached it with both skins. Using simply supported boundary conditions, a free vibration test was carried out using an impact hammer for predicting the natural frequencies, the mode shapes and the damping coefficient versus the fibers content. In addition, an analytical model based on the Higher order Shear Deformation Theory (HSDT) was developed to predict natural frequencies and the mode shapes according to Navier's solution. From the experimental test, we have found that the frequency increases with the increase in the mass fraction of the fibers until 10%. Beyond this fraction, the frequencies give relatively lower values. For the analytical model, variation of the natural frequencies increased considerably with side-to-thickness ratio (a/H) and equivalent thickness of the core to thickness of the face (hs/h). We concluded that, the vibration behavior was significantly influenced by geometrical and mechanical properties of the partially bio-sourced sandwich panel.
Keywords
equivalent stiffness; orthogonally stiffeners; sandwich panel; short Alfa fibers; vibration behavior;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Merzoug, A., Bouhamida, B., Sereir, Z., Bezazi, A., Kilic, A. and Candan, Z. (2020), "Quasi-static and dynamic mechanical thermal performance of date palm/glass fiber hybrid composites", J. Ind. Text., 152808372095803. https://doi.org/10.1177/1528083720958036.   DOI
2 Petrone, G., Carzana, A., Ricci, F. and De Rosa, S. (2017), "Damage detection through structural intensity and vibration based techniques", Adv. Aircraft Spacecraft Sci., 4(6), 613-637. http://doi.org/10.12989/aas.2017.4.6.613.   DOI
3 Thinh, T.I. and Quoc, T.H. (2010), "Finite element modeling and experimental study on bending and vibration of laminated stiffened glass fiber/polyester composite plates", Comput. Mater. Sci., 49, S383-S389. https://doi.org/10.1016/j.commatsci.2010.05.011.   DOI
4 Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition, CRC Press.
5 Shahgholian-Ghahfarokhi, D., Rahimi, G., Zarei, M. and Salehipour, H. (2020), "Free vibration analyses of composite sandwich cylindrical shells with grid cores: experimental study and numerical simulation", Mech. Bas. Des. Struct. Mach., 1-20. https://doi.org/10.1080/15397734.2020.1725565.   DOI
6 Xin, F.X. and Lu, T.J. (2011), "Analytical modeling of wave propagation in orthogonally rib-stiffened sandwich structures: Sound radiation", Comput. Struct., 89, 507-516. https://doi.org/10.1016/j.compstruc.2010.12.007.   DOI
7 Zhang, Z., Li, S. and Huang, Q. (2018), "Low-frequency sound radiation of infinite orthogonally rib-stiffened sandwich structure with periodic subwavelength arrays of shunted piezoelectric patches", Compos. Struct., 187, 144-156. https://doi.org/10.1016/j.compstruct.2017.12.053.   DOI
8 Md Shah, A.U., Sultan, M.T. and Jawaid, M. (2019), "Sandwich-structured bamboo powder/glass fibrereinforced epoxy hybrid composites-Mechanical performance in static and dynamic evaluations", J. Sandw. Struct. Mater., 23(1), 47-64. https://doi.org/10.1016/j.jmrt.2019.09.003.   DOI
9 Liu, N. and Jeffers, A.E. (2017), "Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory", Compos. Struct., 176, 143-153. https://doi.org/10.1016/j.compstruct.2017.05.037.   DOI
10 Liu, N. and Jeffers, A.E. (2018), "Adaptive isogeometric analysis in structural frames using a layer-based discretization to model spread of plasticity", Comput. Struct., 196, 1-11. https://doi.org/10.1016/j.compstruc.2017.10.016.   DOI
11 Liu, N., Ren, X. and Lua, J. (2020), "An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures", Compos. Struct., 237, 111893. https://doi.org/10.1016/j.compstruct.2020.111893   DOI
12 Zaman, I., Ismail, A.E. and Awang, M.K. (2011), "Influence of fiber volume fraction on the tensile properties and dynamic characteristics of coconut fiber reinforced composite", J. Sci. Tech., 1(1), 55-71.
13 Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.   DOI
14 Nemeth, M.P. (2011), "A treatise on equivalent-plate stiffnesses for stiffened laminated-composite plates and plate-like lattices", National Aeronautics and Space Administration, Langley Research Center Hampton, Virginia.
15 Petrolo, M., Carrera, E., Saeghier, A. and Alawami A.S. (2016), "Free vibration analysis of damaged beams via refined models", Adv. Aircraft Spacecraft Sci., 3(1), 95-112. http://doi.org/10.12989/aas.2016.3.1.095.   DOI
16 Phan, C.N., Frostig, Y. and Kardomateas, G.A. (2013), "Free vibration of unidirectional sandwich panels, Part II: Incompressible core", J. Sandw. Struct. Mater., 15(4), 412-428. https://doi.org/10.1177/1099636213485520.   DOI
17 Wang, Y. and Wang, X. (2015), "Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method", J. Sandw. Struct. Mater., 18(3), 294-320. https://doi.org/10.1177/1099636215601373.   DOI
18 Sahoo, S.S., Panda, S.K. and Singh, V.K. (2017), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", J. Mater.: Des. Appl., 231(5), 463-478. https://doi.org/10.1177/1464420715600191.   DOI
19 Semmani, A., Sereir, Z. and Hamou, Y. (2020), "Analysis and optimization of composite kagome grid panels subjected to the low velocity impact", J. Dyn. Behav. Mater., 6 287-302. https://doi.org/10.1007/s40870-020-00243-x.   DOI
20 Teo, S.C., Lan, D.N.U., Teh, P.L. and Tran, L.Q.N. (2016), "Mechanical behavior of palm oil-based composite foam and its sandwich structure with a flax-epoxy composite", J. Appl. Polym. Sci., 133, 43977. https://doi.org/10.1002/app.43977.   DOI
21 Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", ASME J. Appl. Mech., 37(4), 1031-1036.   DOI
22 Xu, G.D., Zeng, T., Cheng, S., Wang, X.H. and Zhang, K. (2019), "Free vibration of composite sandwich beam with graded corrugated lattice core", Compos. Struct., 229, 111466. https://doi.org/10.1016/j.compstruct.2019.111466.   DOI
23 Sinha, L., Mishra, S.S., Nayak, A.N. and Sahu, S.K. (2020), "Free vibration characteristics of laminated composite stiffened plates: Experimental and numerical investigation", Compos. Struct., 233, 11557. https://doi.org/10.1016/j.compstruct.2019.111557.   DOI
24 Hamamousse, K., Sereir, Z., Benzidane, R., Gehring, F., Gomina, M. and Poilane, C. (2019), "Experimental and numerical studies on the low-velocity impact response of orthogrid epoxy panels reinforced with short plant fibers", Compos. Struct., 211, 469-480. https://doi.org/10.1016/j.compstruct.2019.01.005.   DOI
25 Khaldi, M., Vivet, A., Bourmaud, A., Sereir, Z. and Kada, B. (2016), "Damage analysis of composites reinforced with Alfa fibers: viscoelastic behavior and debonding at the fiber/matrix interface", J. Appl. Polym. Sci., 133(31), 43760. https://doi.org/10.1002/app.43760.   DOI
26 Leknitskii, S.G. (1981), Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow.
27 Li, C., Wu, G., Xiao, F. and Wu, C. (2007), "Damping behavior of sandwich beam laminated with CIIR/petroleum resins blends by DMA measurement", J. Appl. Polym. Sci., 106(4), 2472-2478. https://doi.org/10.1002/app.25450.   DOI
28 Azarafza, R. (2018), "Fabrication, experimental modal testing, and a numerical analysis of composite sandwich structures with a grid-stiffened core", Compos. Mater., 54(4), 537-544. https://doi.org/10.1007/s11029-018-9762-4.   DOI
29 Ben Ameur, M., El Mahi, A., Rebiere, J.L., Abdennadher, M. and Haddar, M. (2018), "damping analysis of unidirectional carbon/flax fiber hybrid composites", Int. J. Appl. Mech., 10(05), 1850050. https://doi.org/10.1142/S1758825118500503.   DOI
30 Benzidane, R., Sereir, Z., Bennegadi, M.L., Doumalin, P. and Poilane, C. (2018), "Morphology, static and fatigue behavior of a natural UD composite: The date", Compos. Struct., 203, 110-123. https://doi.org/10.1016/j.compstruct.2018.06.122.   DOI
31 Djoudia, T., Hecinia, M., Scidab, D., Djeblouna, Y. and Djemai, H. (2019), "Physico-mechanical characterization of composite materials based on date palm tree fibers", J. Nat. Fiber., 18(6), 1-14. https://doi.org/10.1080/15440478.2019.1658251.   DOI
32 Ehsani, A. and Rezaeepazhand, J. (2016), "Vibration and stability of laminated composite orthogrid plates", J. Reinf. Plast. Compos., 35(13), 1051-1061. https://doi.org/10.1177/0731684416635757.   DOI
33 Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X. (2018), "An analytical study of sound transmission through stiffened double laminated composite sandwich plates", Aerosp. Sci. Tech., 82-83, 92-104. https://doi.org/10.1016/j.ast.2018.09.012.   DOI
34 Jiang, S., Sun, F., Fan, H. and Fang, D. (2017), "Fabrication and testing of composite orthogrid sandwich cylinder", Compos. Sci. Technol., 142, 171-179. https://doi.org/10.1016/j.compscitech.2017.02.009.   DOI
35 Marjanovic, M., Kolarevic, N., Nefovska-Danilovic, M. and Petronijevic, M. (2016), "Free vibration study of sandwich plates using a family of novel shear deformable dynamic stiffness elements: Limitations and comparison with the finite element solutions", Thin Wall. Struct., 107, 678-694. https://doi.org/10.1016/j.tws.2016.08.002.   DOI
36 Adjal, Y., Sereir, Z., Benzidane, R. and Bendada, A. (2021), "Vibration of damaged bio-composite beams reinforced with random short Alfa fibers: Experimental and analytical investigations", Adv. Aircraft Spacecraft Sci., 8(2), 127-149. https://doi.org/10.12989/aas.2021.8.2.127.   DOI
37 Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X.   DOI
38 Halpin, J.C. (1969), Effects of Environmental Factors on Composite Materials, Air Force Materials Lab Wright-Patterson AFB OH.
39 Liu, N., Plucinsky, P. and Jeffers, A.E. (2017), "Combining load-controlled and displacement- controlled algorithms to model thermal-mechanical snap-through instabilities in structures", J. Eng. Mech., 143, 1-11. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001263.   DOI
40 Marrakchi, Z., Khiari, R., Oueslati, H., Mauret, E. and Mhenni, F. (2011), "Pulping and papermaking properties of Tunisian Alfa stems (Stipa tenacissima) effects of refining process", Ind. Crops. Prod., 34, 1572-1582. https://doi.org/10.1016/j.indcrop.2011.05.022.   DOI
41 Amrane, A., Sereir, Z., Poilane, C. and Vivet, A. (2019), "Effect of form factor and mass fraction of alfa short fibers on the mechanical behavior of an Alfa/Green poxy bio-composite", J. Compos. Adv. Mater., 29(4), 185191. https://doi.org/10.18280/RCMA.290401.   DOI