DOI QR코드

DOI QR Code

Vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core: Analytical and experiment study

  • Boussoufi, Aicha (Laboratoire Structures des Composites et MateriauxInnovants, Department of Marine Engineering, University of Science and Technology of Oran) ;
  • Errouane, Lahouaria (Laboratoire Structures des Composites et MateriauxInnovants, Department of Marine Engineering, University of Science and Technology of Oran) ;
  • Sereir, Zouaoui (Laboratoire Structures des Composites et MateriauxInnovants, Department of Marine Engineering, University of Science and Technology of Oran) ;
  • Antunes, Jose V. (Applied Dynamics Laboratory, Instituto Technologico e Nuclear, ITN/ADL) ;
  • Debut, Vincent (Applied Dynamics Laboratory, Instituto Technologico e Nuclear, ITN/ADL)
  • Received : 2022.01.13
  • Accepted : 2022.04.06
  • Published : 2022.05.25

Abstract

By the present paper, both experimental and analytical models have been proposed to study the vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core. For a variable mass fraction of Alfa fibers from 5% to 15%, impregnated in a Medapoxy STR resin, this panel were manufactured by molding the orthogonally stiffened core then attached it with both skins. Using simply supported boundary conditions, a free vibration test was carried out using an impact hammer for predicting the natural frequencies, the mode shapes and the damping coefficient versus the fibers content. In addition, an analytical model based on the Higher order Shear Deformation Theory (HSDT) was developed to predict natural frequencies and the mode shapes according to Navier's solution. From the experimental test, we have found that the frequency increases with the increase in the mass fraction of the fibers until 10%. Beyond this fraction, the frequencies give relatively lower values. For the analytical model, variation of the natural frequencies increased considerably with side-to-thickness ratio (a/H) and equivalent thickness of the core to thickness of the face (hs/h). We concluded that, the vibration behavior was significantly influenced by geometrical and mechanical properties of the partially bio-sourced sandwich panel.

Keywords

References

  1. Adjal, Y., Sereir, Z., Benzidane, R. and Bendada, A. (2021), "Vibration of damaged bio-composite beams reinforced with random short Alfa fibers: Experimental and analytical investigations", Adv. Aircraft Spacecraft Sci., 8(2), 127-149. https://doi.org/10.12989/aas.2021.8.2.127.
  2. Amrane, A., Sereir, Z., Poilane, C. and Vivet, A. (2019), "Effect of form factor and mass fraction of alfa short fibers on the mechanical behavior of an Alfa/Green poxy bio-composite", J. Compos. Adv. Mater., 29(4), 185191. https://doi.org/10.18280/RCMA.290401.
  3. Azarafza, R. (2018), "Fabrication, experimental modal testing, and a numerical analysis of composite sandwich structures with a grid-stiffened core", Compos. Mater., 54(4), 537-544. https://doi.org/10.1007/s11029-018-9762-4.
  4. Ben Ameur, M., El Mahi, A., Rebiere, J.L., Abdennadher, M. and Haddar, M. (2018), "damping analysis of unidirectional carbon/flax fiber hybrid composites", Int. J. Appl. Mech., 10(05), 1850050. https://doi.org/10.1142/S1758825118500503.
  5. Benzidane, R., Sereir, Z., Bennegadi, M.L., Doumalin, P. and Poilane, C. (2018), "Morphology, static and fatigue behavior of a natural UD composite: The date", Compos. Struct., 203, 110-123. https://doi.org/10.1016/j.compstruct.2018.06.122.
  6. Djoudia, T., Hecinia, M., Scidab, D., Djeblouna, Y. and Djemai, H. (2019), "Physico-mechanical characterization of composite materials based on date palm tree fibers", J. Nat. Fiber., 18(6), 1-14. https://doi.org/10.1080/15440478.2019.1658251.
  7. Ehsani, A. and Rezaeepazhand, J. (2016), "Vibration and stability of laminated composite orthogrid plates", J. Reinf. Plast. Compos., 35(13), 1051-1061. https://doi.org/10.1177/0731684416635757.
  8. Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X. (2018), "An analytical study of sound transmission through stiffened double laminated composite sandwich plates", Aerosp. Sci. Tech., 82-83, 92-104. https://doi.org/10.1016/j.ast.2018.09.012.
  9. Halpin, J.C. (1969), Effects of Environmental Factors on Composite Materials, Air Force Materials Lab Wright-Patterson AFB OH.
  10. Hamamousse, K., Sereir, Z., Benzidane, R., Gehring, F., Gomina, M. and Poilane, C. (2019), "Experimental and numerical studies on the low-velocity impact response of orthogrid epoxy panels reinforced with short plant fibers", Compos. Struct., 211, 469-480. https://doi.org/10.1016/j.compstruct.2019.01.005.
  11. Jiang, S., Sun, F., Fan, H. and Fang, D. (2017), "Fabrication and testing of composite orthogrid sandwich cylinder", Compos. Sci. Technol., 142, 171-179. https://doi.org/10.1016/j.compscitech.2017.02.009.
  12. Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X.
  13. Khaldi, M., Vivet, A., Bourmaud, A., Sereir, Z. and Kada, B. (2016), "Damage analysis of composites reinforced with Alfa fibers: viscoelastic behavior and debonding at the fiber/matrix interface", J. Appl. Polym. Sci., 133(31), 43760. https://doi.org/10.1002/app.43760.
  14. Leknitskii, S.G. (1981), Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow.
  15. Li, C., Wu, G., Xiao, F. and Wu, C. (2007), "Damping behavior of sandwich beam laminated with CIIR/petroleum resins blends by DMA measurement", J. Appl. Polym. Sci., 106(4), 2472-2478. https://doi.org/10.1002/app.25450.
  16. Liu, N. and Jeffers, A.E. (2017), "Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory", Compos. Struct., 176, 143-153. https://doi.org/10.1016/j.compstruct.2017.05.037.
  17. Liu, N. and Jeffers, A.E. (2018), "Adaptive isogeometric analysis in structural frames using a layer-based discretization to model spread of plasticity", Comput. Struct., 196, 1-11. https://doi.org/10.1016/j.compstruc.2017.10.016.
  18. Liu, N., Plucinsky, P. and Jeffers, A.E. (2017), "Combining load-controlled and displacement- controlled algorithms to model thermal-mechanical snap-through instabilities in structures", J. Eng. Mech., 143, 1-11. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001263.
  19. Liu, N., Ren, X. and Lua, J. (2020), "An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures", Compos. Struct., 237, 111893. https://doi.org/10.1016/j.compstruct.2020.111893
  20. Marjanovic, M., Kolarevic, N., Nefovska-Danilovic, M. and Petronijevic, M. (2016), "Free vibration study of sandwich plates using a family of novel shear deformable dynamic stiffness elements: Limitations and comparison with the finite element solutions", Thin Wall. Struct., 107, 678-694. https://doi.org/10.1016/j.tws.2016.08.002.
  21. Marrakchi, Z., Khiari, R., Oueslati, H., Mauret, E. and Mhenni, F. (2011), "Pulping and papermaking properties of Tunisian Alfa stems (Stipa tenacissima) effects of refining process", Ind. Crops. Prod., 34, 1572-1582. https://doi.org/10.1016/j.indcrop.2011.05.022.
  22. Md Shah, A.U., Sultan, M.T. and Jawaid, M. (2019), "Sandwich-structured bamboo powder/glass fibrereinforced epoxy hybrid composites-Mechanical performance in static and dynamic evaluations", J. Sandw. Struct. Mater., 23(1), 47-64. https://doi.org/10.1016/j.jmrt.2019.09.003.
  23. Merzoug, A., Bouhamida, B., Sereir, Z., Bezazi, A., Kilic, A. and Candan, Z. (2020), "Quasi-static and dynamic mechanical thermal performance of date palm/glass fiber hybrid composites", J. Ind. Text., 152808372095803. https://doi.org/10.1177/1528083720958036.
  24. Nemeth, M.P. (2011), "A treatise on equivalent-plate stiffnesses for stiffened laminated-composite plates and plate-like lattices", National Aeronautics and Space Administration, Langley Research Center Hampton, Virginia.
  25. Petrolo, M., Carrera, E., Saeghier, A. and Alawami A.S. (2016), "Free vibration analysis of damaged beams via refined models", Adv. Aircraft Spacecraft Sci., 3(1), 95-112. http://doi.org/10.12989/aas.2016.3.1.095.
  26. Petrone, G., Carzana, A., Ricci, F. and De Rosa, S. (2017), "Damage detection through structural intensity and vibration based techniques", Adv. Aircraft Spacecraft Sci., 4(6), 613-637. http://doi.org/10.12989/aas.2017.4.6.613.
  27. Phan, C.N., Frostig, Y. and Kardomateas, G.A. (2013), "Free vibration of unidirectional sandwich panels, Part II: Incompressible core", J. Sandw. Struct. Mater., 15(4), 412-428. https://doi.org/10.1177/1099636213485520.
  28. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  29. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition, CRC Press.
  30. Sahoo, S.S., Panda, S.K. and Singh, V.K. (2017), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", J. Mater.: Des. Appl., 231(5), 463-478. https://doi.org/10.1177/1464420715600191.
  31. Semmani, A., Sereir, Z. and Hamou, Y. (2020), "Analysis and optimization of composite kagome grid panels subjected to the low velocity impact", J. Dyn. Behav. Mater., 6 287-302. https://doi.org/10.1007/s40870-020-00243-x.
  32. Shahgholian-Ghahfarokhi, D., Rahimi, G., Zarei, M. and Salehipour, H. (2020), "Free vibration analyses of composite sandwich cylindrical shells with grid cores: experimental study and numerical simulation", Mech. Bas. Des. Struct. Mach., 1-20. https://doi.org/10.1080/15397734.2020.1725565.
  33. Sinha, L., Mishra, S.S., Nayak, A.N. and Sahu, S.K. (2020), "Free vibration characteristics of laminated composite stiffened plates: Experimental and numerical investigation", Compos. Struct., 233, 11557. https://doi.org/10.1016/j.compstruct.2019.111557.
  34. Teo, S.C., Lan, D.N.U., Teh, P.L. and Tran, L.Q.N. (2016), "Mechanical behavior of palm oil-based composite foam and its sandwich structure with a flax-epoxy composite", J. Appl. Polym. Sci., 133, 43977. https://doi.org/10.1002/app.43977.
  35. Thinh, T.I. and Quoc, T.H. (2010), "Finite element modeling and experimental study on bending and vibration of laminated stiffened glass fiber/polyester composite plates", Comput. Mater. Sci., 49, S383-S389. https://doi.org/10.1016/j.commatsci.2010.05.011.
  36. Wang, Y. and Wang, X. (2015), "Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method", J. Sandw. Struct. Mater., 18(3), 294-320. https://doi.org/10.1177/1099636215601373.
  37. Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", ASME J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
  38. Xin, F.X. and Lu, T.J. (2011), "Analytical modeling of wave propagation in orthogonally rib-stiffened sandwich structures: Sound radiation", Comput. Struct., 89, 507-516. https://doi.org/10.1016/j.compstruc.2010.12.007.
  39. Xu, G.D., Zeng, T., Cheng, S., Wang, X.H. and Zhang, K. (2019), "Free vibration of composite sandwich beam with graded corrugated lattice core", Compos. Struct., 229, 111466. https://doi.org/10.1016/j.compstruct.2019.111466.
  40. Zaman, I., Ismail, A.E. and Awang, M.K. (2011), "Influence of fiber volume fraction on the tensile properties and dynamic characteristics of coconut fiber reinforced composite", J. Sci. Tech., 1(1), 55-71.
  41. Zhang, Z., Li, S. and Huang, Q. (2018), "Low-frequency sound radiation of infinite orthogonally rib-stiffened sandwich structure with periodic subwavelength arrays of shunted piezoelectric patches", Compos. Struct., 187, 144-156. https://doi.org/10.1016/j.compstruct.2017.12.053.