• Title/Summary/Keyword: Vibration and stiffness

Search Result 2,005, Processing Time 0.024 seconds

Free Vibration Analysis of Axisymmetric Cylindrical Shell by Sylvester-Transfer Stiffness Coefficient Method (실베스터-전달강성계수법에 의한 축대칭 원통형 셸의 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.46-55
    • /
    • 2013
  • In this paper, the computational algorithm for free vibration analysis of an axisymmetric cylindrical shell is formulated by the Sylvester-transfer stiffness coefficient method (S-TSCM) which combines the Sylvester's inertia theorem and the transfer stiffness coefficient method. After the computational programs for obtaining the natural frequencies and natural modes of the axisymmetric cylindrical shell are made by the S-TSCM and the finite element method (FEM), the computational results which are natural frequencies, natural modes, and computational times by both methods are compared. From the computational results, we can confirm that S-TSCM has the reliability in the free vibration analysis of the axisymmetric cylindrical shell and is superior to FEM in the viewpoint of computational times.

A Study on the Measurement and Analysis of Whirling Vibration Behavior of Marine Propulsion Shafting System using Gap-sensors

  • Sun, Jin-Suk;Han, Tae-Min;Lee, Kang-Ki;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.130-135
    • /
    • 2015
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational rpm range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering from operating rpm up to target rpm, however, the range is un-measurable generally. In order to resolve the measurement issue, this study shows the measuring method and the assessment method of relevant natural frequency of whiling vibration by using measured harmonic order component of whirling vibration.

The Geometrical Analysis of the Response and the Stiffness Matrix of a Wire Type Actuator in the Optical Disc Drive (와이어 지지형 광픽업 액츄에이터의 강성행렬과 기하학적 응답해석)

  • 단병주;최용제
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.984-990
    • /
    • 1999
  • This paper presents the geometrical methodology to decouple the vibration modes of an elastically supported single rigid body in three-dimensional space. It is shown that the vibration modes can be decoupled by placing the center of elasticity at suitable locations and thereby yielding the plane(s) of symmetry for the given stiffness matrix. The developed methodology has been applied to the actuator supported by the 4-wire suspensions in optical discs, which has one plane of symmetry. For this numerical example, the axes of vibrations have been computed and illustrated with the natural frequencies. The forced response at the objective lens is represented and its geometrical interpretation has been explained as the mutual moment between the axis of vibration and the applied wrench times the line coordinates of the axis of vibration.

  • PDF

Vibration Analysis of a Rectangular Plate with Stiffeners Using the Transfer Stiffness Coefficient Method (전달강성계수법을 이용한 보강재를 갖는 사각평판의 진동해석)

  • Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.42-49
    • /
    • 2005
  • The vibration analysis of a rectangular plate with stiffeners is formulated by using the transfer stiffness coefficient method (TSCM). This method is based on the concept of the successive transmission of stiffness coefficients which are defined as the relationship between the force vector and the displacement vector at an arbitrary nodal line. In order to confirm the validity of the present method, bending vibration analysis for a rectangular plate with stiffener is carried out on a personal computer by using the present method and the finite element method (FEM). Through comparing computational results of the TSCM and the FEM, the effectivness of the TSCM from the viewpoint of computational cost, that is, computational time and storage is demonstrated.

  • PDF

A Study on the Vibration Characteristics of Helical Gears with Tooth Errors (치형오차를 가진 헬리컬기어의 진동특성에 관한 연구)

  • Park, Chan-Il;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1534-1542
    • /
    • 1996
  • Gear vibration is caused by the mesh stiffness, gear accuracy, and assembling errors. For these reasons, helical gear has the azial, radial, and rotational vibrations. In this study, the mesh stiffness is calculated by considering the tooth bending, contact, and foundation deformations. Rotational vibration of helical gear with tooth error is modeled by the nonlidear equation of motion with single degree of freedom and is anlyzed numerically. Also, by a specially designed experimental set-up, the analysis are cross-checked and the vibration characteristics of helical gear are discussed.

Active Control of Forced Vibrations in Smart Laminated Composite Plates Using Piezoceramics (압전세라믹을 이용한 지능 복합적층판의 강제진동의 능동제어)

  • 강영규;구근회;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.193-199
    • /
    • 2001
  • Active control of forced vibration of the cantilevered laminated composite plates using collocated piezoceramic sensor/actuator is analyzed numerically and verified experimentally for various fiber orientations. Impact on the stiffness and the damping properties is studied by varying stacking sequence of [$\theta$$_{4}$O$_{2}$90$_{2}$]s for the laminated composite plate. For the forced vibration control, the plate is excited by one pair of collocated PZT exciters in resonance and its vibrational response is suppressed by the other collocated PZT sensor/actuator using direct negative velocity feedback. It is shown that the active control of forced vibration is more effective for the smart laminated plate with higher modal damped stiffness(2ζ$\omega$/aup 2/) .

  • PDF

A Study on the Dynamic Characteristics of the Composite Boring Bar (복합재료 보링바의 동적 특성에 관한 연구)

  • 황희윤;김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.206-210
    • /
    • 2003
  • Machining of deep holes with conventional boring bars frequently induce chatter vibration because of their low dynamic stiffness which is defined as the product of static stiffness and damping of conventional boring bar materials. In addition, the specific stiffness ($E/{\rho}g$) of boring bars is more important than the static stiffness to increase the fundamental natural frequency of boring bars in high speed machining. Therefore, boring bar materials should have high static stiffness and high damping as well as high specific stiffness. The best way to meet requirements is to employ fiber reinforced composite materials for high speed boring bars because composite materials have high static stiffness, high damping and high specific stiffness compared to conventional boring bar materials. In this study, the dynamic characteristics of carbon fiber epoxy composite boring bars were investigated. From the metal cutting test, it was found that the chatter was not initiated up to the ratio of length to diameter of 10.7 at the rotating speed of 2,500 rpm.

  • PDF

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.671-675
    • /
    • 2001
  • Elastomers, which are engine mounts and body mounting rubbers, are traditionally designed for NVH use in vehicles, and they are designed to isolate specific unwanted frequencies. According to the measurement of the characteristics of engine mounts and body mounting rubbers, dynamic stiffness changes with respect to the driving miles accumulated in engine mounts and initial load in body mounting. This study looks at the variability in same engine mount properties, and the desired dynamic stiffness may increased with driving miles accumulated. And the dynamic stiffness of body mounting rubber changes very stiff above 150Hz.

  • PDF

A Study on the Dynamic Analysis Modeling of Industrial Robot's Wrist Power Transmission (산업용 로봇 손목 동력 전달계의 동특성 해석 모델 연구)

  • 김우형;정두한;최영삼;정진태;임흥순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.243-246
    • /
    • 2004
  • The dynamic characteristic of a wrist power transmission examine closely with mass property, to present the model which induce the vibration is ultimately the purpose. A robot wrist power transmission for analysis model got the mass property through the approach to be the experimental. A bearing equivalent stiffness which supports the axis and a gear contact equivalent stiffness are determined by the simplicity analysis model compared the result of the experiment. We calculate the vibration tendency of the robot wrist power transmission by an analysis tool which is called the RecurDyn. We compared it with a signal analysis experiment's which a robot operation happens which is based on the ambient noise.

  • PDF

The Geometrical Mode Analysis of an Elastically Suspended Rigid Body with Planes of Symmetry (대칭면을 갖는 강체 진동계의 진동모드에 대한 기하학적 해석)

  • Dan, Byeong-Ju;Choe, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.110-117
    • /
    • 2000
  • Vibration modes obtained from a modal analysis can be better explained from a screw theoretical standpoint. A vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as the twisting motion on a screw in a three dimensional space. This paper, presents the method to diagonalize a spatial stiffness matrix by use of a parallel axis congruence transformation. It also describes that the stiffness matrix diagonalized by a congruence transformation, can have the planes of symmetry depending on the location of the center of elasticity. For a plane of symmetry, any vibration mode can be expressed by the axis of vibration. Analytical solutions for the axis of vibration has been derived.