• 제목/요약/키워드: Vibration analyses

검색결과 841건 처리시간 0.03초

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

대형 LCD 패널 제조 공정용 복합재 롤러 봉의 진동 안정성 해석 (Rotordynamic Stability Analyses of a Composite Roller for Large LCD Panel Manufacturing)

  • 박효근;김동만;김동현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.641-648
    • /
    • 2007
  • Computational rotor dynamic analyses of designed composite roller for large LCD panel manufacturing process have been conducted. The present computational method is based on the general finite element method with rotating gyroscopic effects. General purpose commercial finite element code, with special rotordynamics analysis module is applied. For the purpose of numerical verification, comparison study for a benchmark dual rotor model with support bearings is also presented. Detailed finite element models for composite roller with different length are constructed and analyzed considering gravity effect in order to investigate vibration characteristics in actual operation environment. As results of the present study, rotor stability diagrams and mass unbalance responses are presented for different rotating conditions.

  • PDF

원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화 (Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell)

  • 이창훈;우호길;구경회;이재한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF

베어링 지지 효과를 고려한 3 차원 로터동역학 해석 (Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects)

  • 박효근;김동현;김명국;전승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 구조 및 진동해석 (Structural and Vibration Analysis of Large Windturbine Rotor Considering the Rotational and Aero Load Effect)

  • 김동만;김동현;박강균;김유성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.270-275
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are full? used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

  • PDF

원판 덮개를 갖는 고정-자유 원통셸의 고유진동 해석 (Free Vibration Analysis of Clamped-Free Circular Cylindrical Shells with Circular Plate at Top)

  • 임정식;이영신
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.801-818
    • /
    • 1996
  • Free vibration analyses of circular cylindrical shells attached with plate structures for the symmetric boundary condition such as simply-simply supported shells by receptance method are found in literatures. However analyses of those shells with unsymmetric boundary condition as clamped free boundary are hardly found. Here frequency equation of the clamped free circular cylindrical shell with end plate is derived using receptance method and natural frequencies of the combined system were calculated. The frequencies and mode shapes obtained from present method are compared with those of ANSYS to show the validity of the method. Natural frequencies and mode component ratios of clamped-free cylindrical shell are obtained by employing Rayleigh-Ritz method on energy equations, and they are used in receptance calculation. Results show good agreement with those of ANSYS analyses.

  • PDF

Dynamic response and design of a skirted strip foundation subjected to vertical vibration

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.345-358
    • /
    • 2020
  • Numerous studies have repeatedly demonstrated the efficiency of using skirts to increase the bearing capacity and to reduce settlement of shallow foundations subjected to static loads. However, no efforts have been made to study the efficiency of using these skirts to reduce settlement produced by machine vibration, although machines are very sensitive to settlement and the foundations of these machines should be designed properly to ensure that the settlement produced due to machine vibration is very small. This research has been conducted to investigate the efficiency of using skirts as a technique to reduce the settlement of a strip foundation subjected to machine vibration. A two-dimensional finite element model has been developed, validated, and employed to achieve the aim of the study. The results of the analyses showed that the use of skirts reduces the settlement produced due to machine vibration. However, the percentage decrease of the settlement is remarkably influenced by the density of the soil and the frequency of vibration, where it rises as the frequency of vibration increases and declines as the soil density rises. It was also found that increasing skirt length increases the percentage decrease of the settlement. Importantly, the results obtained from the analyses have been utilized to derive new dynamic impedance values that implicitly consider the presence of skirts. Finally, novel design equations of dynamic impedance that implicitly account to the effect of the skirts have been derived and validated utilizing a new intelligent data driven method. These new equations can be used in future designs of skirted strip foundations subjected to machine vibration.

덤프트럭 재하 조건에 따른 지중 삼중관의 실험 및 수치해석적 진동 거동 분석 (Experimental and Numerical Analysis on Vibration Behavior of Underground Three-layered Pipeline subjected to Dump Truck Loads)

  • 조석호;원종화;김정재;김문겸
    • 한국가스학회지
    • /
    • 제15권1호
    • /
    • pp.22-29
    • /
    • 2011
  • 도심지 내 공사 현장 및 주변 지반에 매설된 지중 배관은 시공하중에 의한 진동에 노출이 되어있는 실정이다. 주기적으로 진동이 발생하는 매설된 배관의 지중 동적 거동 특성을 분석하기 위하여 기존 문헌 분석과 실증 실험의 결과를 토대로 수치해석을 수행하고 그 사용성을 검증하였다. 본 논문은 건설 장비중 하나인 덤프 트럭 하중의 매설 심도에 따른 배관의 거동을 분석하여 향후 지중 배관 관리기준 수립을 위한 기초 연구로서 수행되었다. 매설 심도 0.6, 1.2, 1.8m 차량 이동 속도 10km/h에 대하여 해석을 실시하였으며, 그 결과 매설 심도가 깊어질수록 진동속도 및 발생 응력이 작아지는 것을 확인할 수 있다.

트랙터 캐빈의 진동저감을 위한 방진고무의 형상최적설계 (Shape Optimal Design of Anti-Vibration Rubber Assembly to Reduce the Vibration of a Tractor Cabin)

  • 최효준;이상훈
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.657-663
    • /
    • 2018
  • 본 연구에서는 농업용 트랙터에 조립식으로 결합되는 캐빈에 사용되는 방진고무의 진동절연성능을 향상시키기 위하여 형상최적설계를 수행하였다. 초탄성거동을 보이는 고무의 물성을 평가하기 위하여 일축 및 이축 인장시험을 수행하였고 이를 이용하여 유한요소해석에 입력 가능한 재료 모델을 도출하였다. 실제 트랙터의 운전 상태에서 진동을 측정하여 방진고무로 전달되는 입력 가진 및 이로 인한 캐빈 프레임의 응답을 정량화하였다. 비선형 거동을 보이는 방진고무의 특성을 반영하기 위해 정해석을 이용하여 방진고무의 하중-변위 곡선을 도출하였다. 이로부터 특정 하중 혹은 변위가 가해진 상태에서 방진고무의 강성을 계산할 수 있었으며 이를 캐빈의 조화가진해석에 사용하였다. 해석결과와 시험 결과의 비교를 통하여 해석모델 및 기법의 타당성을 검증하였다. 방진고무의 형상설계를 위하여 다구찌의 인자설계법이 사용되었으며 이를 통하여 강성이 최소화된 방진고무의 형상을 찾을 수 있었다. 방진고무의 최적 형상을 고려하여 조화가진해석을 수행한 결과 초기설계 대비 35 % 이상 개선된 진동저감효과를 확인할 수 있었다.