Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.4.345

Dynamic response and design of a skirted strip foundation subjected to vertical vibration  

Alzabeebee, Saif (Department of Roads and Transport Engineering, College of Engineering, University of Al-Qadisiyah)
Publication Information
Geomechanics and Engineering / v.20, no.4, 2020 , pp. 345-358 More about this Journal
Abstract
Numerous studies have repeatedly demonstrated the efficiency of using skirts to increase the bearing capacity and to reduce settlement of shallow foundations subjected to static loads. However, no efforts have been made to study the efficiency of using these skirts to reduce settlement produced by machine vibration, although machines are very sensitive to settlement and the foundations of these machines should be designed properly to ensure that the settlement produced due to machine vibration is very small. This research has been conducted to investigate the efficiency of using skirts as a technique to reduce the settlement of a strip foundation subjected to machine vibration. A two-dimensional finite element model has been developed, validated, and employed to achieve the aim of the study. The results of the analyses showed that the use of skirts reduces the settlement produced due to machine vibration. However, the percentage decrease of the settlement is remarkably influenced by the density of the soil and the frequency of vibration, where it rises as the frequency of vibration increases and declines as the soil density rises. It was also found that increasing skirt length increases the percentage decrease of the settlement. Importantly, the results obtained from the analyses have been utilized to derive new dynamic impedance values that implicitly consider the presence of skirts. Finally, novel design equations of dynamic impedance that implicitly account to the effect of the skirts have been derived and validated utilizing a new intelligent data driven method. These new equations can be used in future designs of skirted strip foundations subjected to machine vibration.
Keywords
skirted foundation; machine foundation; dynamic impedance; finite element analysis; evolutionary polynomial regression analysis;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Kumar, M.R. and Ghosh, P. (2020), "A novel vibration screening technique using bamboo: a numerical study", J. Nat. Fibers, 17(2), 258-270. https://doi.org/10.1080/15440478.2018.1480448.   DOI
2 Liang, T., Knappett, J.A., Leung, A.K. and Bengough, A.G. (2019), "Modelling the seismic performance of root-reinforced slopes using the finite-element method", Geotechnique, 1-17. https://doi.org/10.1680/jgeot.17.P.128.
3 Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95(4), 859-878.   DOI
4 Majumder, M. and Ghosh, P. (2016), "Intermittent geofoam in-filled trench for vibration screening considering soil non-linearity", KSCE J. Civ. Eng., 20(6), 2308-2318. https://doi.org/10.1007/s12205-015-0267-6.   DOI
5 Al-Aghbari, M.Y. and Mohamedzein, Y.E.A. (2018), "The use of skirts to improve the performance of a footing in sand", Int. J. Geotech. Eng., 1-8. https://doi.org/10.1080/19386362.2018.1429702.
6 Ali, O.S., Aggour, M.S. and McCuen, R.H. (2017) "Dynamic soil-pile interactions for machine foundations", Int. J. Geotech. Eng., 11(3), 236-247. https://doi.org/10.1080/19386362.2016.1213479.   DOI
7 Al-Wakel, S. and Abdulrasool, A. (2018), "Effect of soil stabilized by cement on dynamic response of machine foundations", MATEC Web Conf., 162, 01001.
8 Alzabeebee, S. (2017), "Enhanced design approached for rigid and flexible buried pipes using advanced numerical modelling", Ph.D, Thesis, University of Birmingham, Birmingham, U.K.
9 Alzabeebee, S. (2019b), "Response of buried uPVC pipes subjected to earthquake shake" Innov. Infrastruct. Solut., 4(1), 52. https://doi.org/10.1007/s41062-019-0243-y.   DOI
10 Alzabeebee, S. (2019a), "Seismic response and design of buried concrete pipes subjected to soil loads", Tunn. Undergr. Sp. Technol., 93, 103084. https://doi.org/10.1016/j.tust.2019.103084.   DOI
11 Alzabeebee, S., Chapman, D.N. and Faramarzi, A. (2018a), "A comparative study of the response of buried pipes under static and moving loads", Transport. Geotech., 15, 39-46. https://doi.org/10.1016/j.trgeo.2018.03.001.   DOI
12 Alzabeebee, S., Chapman, D.N. and Faramarzi, A. (2018b), "Development of a novel model to estimate bedding factors to ensure the economic and robust design of rigid pipes under soil loads", Tunn. Undergr. Sp. Technol., 71, 567-578. https://doi.org/10.1016/j.tust.2017.11.009.   DOI
13 Alzabeebee, S., Chapman, D.N. and Faramarzi, A. (2019), "Economical design of buried concrete pipes subjected to UK standard traffic loading", Proc. Inst. Civ. Eng. Struct. Build., 172(2), 141-156. https://doi.org/10.1680/jstbu.17.00035.   DOI
14 Nguyen, Q.V., Fatahi, B. and Hokmabadi, A.S. (2016), "The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction", Struct. Eng. Mech., 58(6), 1045-1075. http://doi.org/10.12989/sem.2016.58.6.1045.   DOI
15 Majumder, M., Ghosh, P. and Rajesh, S. (2017a), "Numerical study on intermittent geofoam in-filled trench as vibration barrier considering soil non-linearity and circular dynamic source", Int. J. Geotech. Eng., 11(3), 278-288. https://doi.org/10.1080/19386362.2016.1215781.   DOI
16 Majumder, M., Ghosh, P. and Rajesh, S. (2017b), "An innovative vibration barrier by intermittent geofoam-a numerical study", Geomech. Eng., 13(2), 269-284. https://doi.org/10.12989/gae.2017.13.2.269.   DOI
17 Manahiloh, K.N. (2020), "Dynamic amplification factor in culverts: A parametric study using three-dimensional finite element analysis", Transport. Infrastruct. Geotechnol., 1-25. https://doi.org/10.1007/s40515-019-00097-4
18 Moghadam, M.J. and Ashtari, K. (2019), "Numerical analysis of railways on soft soil under various train speeds", Transport. Infrastruct. Geotechnol., 7, 103-125. https://doi.org/10.1007/s40515-019-00092-9.   DOI
19 Mohasseb, S., Ghazanfari, N., Rostami, M. and Rostami, S. (2019), "Effect of soil-pile-structure interaction on seismic design of tall and massive buildings through case studies", Transport. Infrastruct. Geotechnol., 7(1), 13-45. https://doi.org/10.1007/s40515-019-00086-7.   DOI
20 Ouahab, M.Y., Mabrouki, A., Mellas, M. and Benmeddour, D. (2018), "Effect of load eccentricity on the bearing capacity of strip footings on non-homogenous clay overlying bedrock", Transport. Infrastruct. Geotechnol., 5(2), 169-186. https://doi.org/10.1007/s40515-018-0055-0.   DOI
21 Pradhan, P.K., Baidya, D.K. and Ghosh, D.P. (2004), "Dynamic response of foundations resting on layered soil by cone model", Soil Dyn. Earthq. Eng., 24(6), 425-434. https://doi.org/10.1016/j.soildyn.2004.03.001.   DOI
22 Baars, S.V. (2018), "Numerical check of the Meyerhof bearing capacity equation for shallow foundations", Innov. Infrastruct. Solut., 3(1), 9. https://doi.org/10.1007/s41062-017-0116-1.   DOI
23 Alzabeebee, S.I. (2014), "Dynamic response of shallow foundation on elastic-plastic clayey soil subjected to impact load", Proceeding of the 1st International Conference on Engineering, Baghdad, Iraq, March.
24 Azzam, W.R. and Basha, A.M. (2018), "Utilization of micro-piles for improving the sub-grade under the existing strip foundation: Experimental and numerical study", Innov. Infrastruct. Solut., 3(1), 44. https://doi.org/10.1007/s41062-018-0149-0.   DOI
25 Azzam, W.R. (2015), "Utilization of the confined cell for improving the machine foundation behavior-Numerical study", J. GeoEng., 10(1), 17-23. http://dx.doi.org/10.6310/jog.2015.10(1).3.
26 Bienen, B., Gaudin, C., Cassidy, M.J., Rausch, L., Purwana, O.A. and Krisdani, H. (2012), "Numerical modelling of a hybrid skirted foundation under combined loading", Comput. Geotech., 45, 127-139. https://doi.org/10.1016/j.compgeo.2012.05.009.   DOI
27 Cerato, A.B. and Lutenegger, A.J. (2007), "Scale effects of shallow foundation bearing capacity on granular material", J. Geotech. Geoenviron. Eng., 133(10), 1192-1202. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1192).   DOI
28 Bose, T., Choudhury, D., Sprengel, J. and Ziegler, M. (2018), "Efficiency of open and infill trenches in mitigating ground-borne vibrations", J. Geotech. Geoenviron. Eng., 144(8), 04018048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001915.
29 Bransby, M.F. and Randolph, M.F. (1998), "The effect of skirted foundation shape on response to combined V-MH loadings", Proceedings of the 8th International Offshore and Polar Engineering Conference, Montreal, Canada, May.
30 Brinkgreve, R.B.J. (2006). Plaxis: Finite Element Code for Soil and Rock Analyses: 2D Version 8.5: (User's Guide), Balkema, Delft, The Netherlands.
31 Samal, M.R., Saran, S., Kumar, A. and Mukerjee, S. (2016), "Dynamic behavior of geogrid reinforced pond ash", Int. J. Geotech. Eng., 10(2), 114-122. https://doi.org/10.1179/1939787915Y.0000000019.   DOI
32 Rahil, F.H. and Abd-Almuniem, S.A. (2018), "Behaviour of machine foundations resting on saturated sand granular tire rubber mixtures", IOP Conf. Ser. Mater. Sci. Eng., 433(1), 012022. https://doi.org/10.1088/1757-899X/433/1/012022.
33 Rezania, M. and Javadi, A.A. (2007), "A new genetic programming model for predicting settlement of shallow foundations", Can. Geotech. J., 44(12), 1462-1473. https://doi.org/10.1139/T07-063.   DOI
34 Saikia, A. (2014), "Numerical study on screening of surface waves using a pair of softer backfilled trenches", Soil Dyn. Earthq. Eng., 65, 206-213. https://doi.org/10.1016/j.soildyn.2014.05.012.   DOI
35 Saikia, A. and Das, U.K. (2014), "Analysis and design of open trench barriers in screening steady-state surface vibrations", Earthq. Eng. Eng. Vib., 13(3), 545-554. https://doi.org/10.1007/s11803-014-0261-x.   DOI
36 Sajjad, G. and Masoud, M. (2017), "Study of the behaviour of skirted shallow foundations resting on sand", Int. J. Phys. Model. Geotech., 18(3), 117-130. https://doi.org/10.1680/jphmg.16.00079.   DOI
37 Schweiger, H.F., Fabris, C., Ausweger, G. and Hauser, L. (2019), "Examples of successful numerical modelling of complex geotechnical problems", Innov. Infrastruct. Solut., 4(1), 2. https://doi.org/10.1007/s41062-018-0189-5.   DOI
38 Shahnazari, H., Shahin, M.A. and Tutunchian, M.A. (2014), "Evolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils", Int. J. Civ. Eng., 12(1), 55-64.
39 Skau, K.S., Chen, Y. and Jostad, H.P. (2018), "A numerical study of capacity and stiffness of circular skirted foundations in clay subjected to combined static and cyclic general loading", Geotechnique, 68(3), 205-220. https://doi.org/10.1680/jgeot.16.P.092.   DOI
40 Chavda, J.T. and Dodagoudar, G.R. (2018), "Finite element evaluation of ultimate capacity of strip footing: Assessment using various constitutive models and sensitivity analysis", Innov. Infrastruct. Solut., 3(1), 15. https://doi.org/10.1007/s41062-017-0121-4.   DOI
41 Clark, J.I. (1998), "The settlement and bearing capacity of very large foundations on strong soils: 1996 RM Hardy keynote address", Can. Geotech. J., 35(1), 131-145. https://doi.org/10.1139/t97-070.   DOI
42 Das, B.M. and Ramana, G.V. (2011), Principles of Soil Dynamics, Cengage Learning.
43 Fattah, M.Y., Salim, N.M. and Al-Shammary, W.T. (2015a), "Effect of embedment depth on response of machine foundation on saturated sand", Arab. J. Sci. Eng., 40(11), 3075-3098. https://doi.org/10.1007/s13369-015-1793-8.   DOI
44 El-Soud, S.A. and Belal, A.M. (2019), "Numerical modeling of rigid strip shallow foundations overlaying geosythetics-reinforced loose fine sand deposits", Arab. J. Geosci., 12(7), 254. https://doi.org/10.1007/s12517-019-4436-7.   DOI
45 Fattah, M., Al-Neami, M. and Jajjawi, N. (2014), "Prediction of liquefaction potential and pore water pressure beneath machine foundations", Open Eng., 4(3), 226-249. https://doi.org/10.2478/s13531-013-0165-y.
46 Fattah, M.Y., Hamood, M.J. and Al-Naqdi, I.A. (2015b), "Finite-element analysis of a piled machine foundation", Proc. Inst. Civ. Eng. Struct. Build., 168(6), 421-432. https://doi.org/10.1680/stbu.14.00053.   DOI
47 Forcellini, D. (2017), "Cost Assessment of isolation technique applied to a benchmark bridge with soil structure interaction", Bull. Earthq. Eng., 15(1), 51-69. https://doi.org/10.1007/s10518-016-9953-0.   DOI
48 Forcellini, D. (2018), "Seismic assessment of a benchmark based isolated ordinary building with soil structure interaction", Bull. Earthq. Eng., 16(5), 2021-2042. https://doi.org/10.1007/s10518-017-0268-6.   DOI
49 Venkateswarlu, H., Ujjawal, K.N. and Hegde, A. (2018), "Laboratory and numerical investigation of machine foundations reinforced with geogrids and geocells", Geotext. Geomembr., 46(6), 882-896. https://doi.org/10.1016/j.geotexmem.2018.08.006.   DOI
50 Ujjawal, K.N., Venkateswarlu, H. and Hegde, A. (2019), "Vibration isolation using 3D cellular confinement system: A numerical investigation", Soil Dyn. Earthq. Eng., 119, 220-234. https://doi.org/10.1016/j.soildyn.2018.12.021.   DOI
51 Vivek, P. and Ghosh, P. (2012), "Dynamic interaction of two nearby machine foundations on homogeneous soil", Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, California, March.
52 Vivek, P. (2011), "Static and dynamic interference of strip footings in layered soil", M.Tech Thesis, Indian Institute of Technology Kanpur, India.
53 Wolf, J.P. (1998), "Simple physical models for foundation dynamics", Dev. Geotech. Eng., 83, 1-70. https://doi.org/10.1016/S0165-1250(98)80004-7.
54 Yang, W., Hussein, M.F.M., Marshall, A.M. and Cox, C. (2013), "Centrifuge and numerical modelling of ground borne vibration from surface sources", Soil Dyn. Earthq. Eng., 44, 78-89. https://doi.org/10.1016/j.soildyn.2012.09.003.   DOI
55 Alzabeebee, S. (2020), "Numerical Analysis of the interference of two active machine foundations", Geotech. Geol. Eng., In Press.
56 Eid, H.T. (2012), "Bearing capacity and settlement of skirted shallow foundations on sand", Int. J. Geomech., 13(5), 645-652. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000237.   DOI
57 Sun, Q., Bo, J. and Dias, D. (2019), "Viscous damping effects on the seismic elastic response of tunnels in three sites", Geomech. Eng., 18(6), 639-650. https://doi.org/10.12989/gae.2019.18.6.639.   DOI
58 Gazetas, G. (1980), "Static and dynamic displacements of foundations on heterogeneous multilayered soils", Geotechnique, 30(2), 159-177. https://doi.org/10.1680/geot.1980.30.2.159.   DOI
59 Forcellini, D. (2019), "Numerical simulations of liquefaction on an ordinary building during Italian (20 May 2012) earthquake", Bull. Earthq. Eng., 17(9), 4797-4823. https://doi.org/10.1007/s10518-019-00666-5.   DOI
60 Fu, Q. and Wu, Y. (2019), "Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads", Geomech. Eng., 19(3), 241-254. https://doi.org/10.12989/gae.2019.19.3.241.   DOI
61 Gazetas, G. (1981), "Machine foundations on deposits of soft clay overlain by a weathered crust", Geotechnique, 31(3), 387-398. https://doi.org/10.1680/geot.1981.31.3.387.   DOI
62 Ghosh, P. (2012), "FLAC based numerical studies on dynamic interference of two nearby embedded machine foundations", Geotech. Geol. Eng., 30(5), 1161-1181. https://doi.org/10.1007/s10706-012-9530-5.   DOI
63 Giustolisi, O. and Savic, D.A. (2006), "A symbolic data-driven technique based on evolutionary polynomial regression", J. Hydroinform., 8(3), 207-222. https://doi.org/10.2166/hydro.2006.020b.   DOI
64 Giustolisi, O. and Savic, D.A. (2009), "Advances in data-driven analyses and modelling using EPR-MOGA", J. Hydroinform., 11(3-4), 225-236. https://doi.org/10.2166/hydro.2009.017.   DOI
65 Gnananandarao, T., Khatri, V.N. and Dutta, R.K. (2018), "Performance of multi-edge skirted footings resting on sand", Indian Geotech. J., 48(3), 510-519. https://doi.org/10.1007/s40098-017-0270-6.   DOI
66 Haddad, E.D. and Choobbasti, A.J. (2019), "Response of micropiles in different seismic conditions", Innov. Infrastruct. Solut., 4(1), 53. https://doi.org/10.1007/s41062-019-0226-z.   DOI
67 Kontoe, S., and Zdravkovic, L., Potts, D.M. and Menkiti, C.O. (2011), "On the relative merits of simple and advanced constitutive models in dynamic analysis of tunnels", Geotechnique, 61(10), 815-829. https://doi.org/10.1680/geot.9.P.141.   DOI
68 Hu, Y., Randolph, M.F. and Watson, P.G. (1999), "Bearing response of skirted foundation on nonhomogeneous soil", J. Geotech. Geoenviron. Eng., 125(11), 924-935. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924).   DOI
69 Kampas, G., Knappett, J.A., Brown, M.J., Anastasopoulos, I., Nikitas, N. and Fuentes, R. (2019), "The effect of tunnel lining modelling approaches on the seismic response of sprayed concrete tunnels in coarse-grained soils", Soil Dyn. Earthq. Eng., 117, 122-137. https://doi.org/10.1016/j.soildyn.2018.11.018.   DOI
70 Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689.   DOI
71 Al-Aghbari, M.Y. and Mohamedzein, Y.E. (2004a), "Bearing capacity of strip foundations with structural skirts", Geotech. Geol. Eng., 22(1), 43. https://doi.org/10.1023/B:GEGE.0000013997.79473.e0.   DOI
72 Al-Aghbari, M.Y. and Mohamedzein, Y.A. (2004b), "Model testing of strip footings with structural skirts", Proc. Inst. Civ. Eng. Ground Improv., 8(4), 171-177. https://doi.org/10.1680/grim.2004.8.4.171.   DOI
73 Al-Aghbari, M.Y. and Mohamedzein, Y.A. (2006), "Improving the performance of circular foundations using structural skirts", Proc. Inst. Civ. Eng. Ground Improv., 10(3), 125-132. https://doi.org/10.1680/grim.2006.10.3.125.   DOI