• Title/Summary/Keyword: Vibration Time Analysis

Search Result 1,521, Processing Time 0.03 seconds

The Estimation of the Floor Vibration in Structure for Application of Response Spectrum Analysis Method (응답스펙트럼 해석법을 이용한 건축 구조물의 바닥진동해석)

  • 이동근;김태호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.169-178
    • /
    • 1998
  • In general, the response spectrum analysis method is widely used for seismic analysis of building structures, and the time history analysis is applied for computation of structural vibration caused by equipments, machines and moving loads, etc. However, compared with the response spectrum analysis method, the time history method is very complex, difficult and time consuming. In this study, the maximum responses for the vertical vibration are calculated conveniently by the response spectrum method. At first, Response spectrum and time history analysis for some earthquake excitations are carried out, and the accuracy of maximum displacements obtained from response spectrum analysis is investigated. Secondly, the process for the response spectrum analysis in excitation is calculated, and the maximum modal responses are combined by CQC method. Finally, results of the proposed method are compared with those of the time history analysis.

  • PDF

Time Historical Response Analysis of Tree Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 분기형 구조물의 시긴이력응답해석)

  • 문덕홍;강현석;최명수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.426-431
    • /
    • 1998
  • This, paper describes formulation for time historical response analysis of vibration for tree structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark-.betha. method. And This present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the tree structure. The validity of the present method compared with the transfer matrix method and the FEM(Finite Element Method) for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

Dynamic Characteristics of the Noise and Vibration of High-speed Train's Wheelset using Time-varying Frequency Analysis (시간-주파수 분석을 이용한 고속철도차량 윤축에서 발생하는 소음과 진동의 동적 특성)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • In this paper, a relationship between the noise and vibration of a high-speed train's wheelset is examined by using time-varying frequency analysis with random data analysis which together contributes to a reduction in the number of experimental running. The noise and vibration of the wheelset is mainly caused by an interaction between the wheel and railway which shows in non-stationary characteristics. For the analysis, they are measured by some microphones and accelerometers, and those signals are post-processed by time-varying frequency analysis with random data analysis. From the analysis, their methods are useful for analyzing the noise and vibration of high-speed train's wheelset.

Vibration Analysis of Loudspeaker by Using Electronic Speckle Pattern Interferometry (전자 스페클 간섭계에 의한 스피커 진동 해석)

  • 김정규;노경완;강영준;김동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.356-361
    • /
    • 1996
  • Nowadays, Electronic Speckle Pattern Interferometry is a well established measuring technique with a wide range of industrial applications, particularly in the fields of deformation measurement and vibration analysis. Comparing with holographic inteferometry, it has some attractive features, which are rapid recording and reconstruction, satisfiable automation etc. Time-average ESPI was used to provide vibration mode shape of an object whose vibration amplitude is given as a fringe pattern. However, it is not possible to determine the direction of motions of a point on the object at any given time, because time-average method does not give any information about the phase of vibration. A better technique is stroboscopic method which can measure the amplitude and phase of vibrating surface. In this paper, loudspeakers were tested by these two methods and the mode shape and amplitude of vibration were visualized. As measured results, we can assume that these techniques will be applied directly in the loudspeaker industry.

  • PDF

Directional Wigner-Ville Distribution and Its Application for Rotating- Machinery Condition Monitoring

  • Kim, Dong-Wan;Ha, Jae-Hong;Shin, Hae-Gon;Lee, Yoon-Hee;Kim, Young-Baik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.587-593
    • /
    • 1996
  • Vibration analysis is one of the most powerful tools available for the detection and isolation of incipient faults in mechanical systems. The methods of vibration analysis in use today and under continuous study are broad band vibration monitoring, time domain analysis, and frequency domain analysis. In recent years, great interest has been generated concerning the use of time-frequency representation and its application for a machinery diagnostics and condition monitoring system. The objective of the research described in this paper was to develop a new diagnostic tool for the rotating machinery. This paper introduces a new time-frequency representation, Directional Wigner-Ville Distribution, which analyses the time- frequency structure of the rotating machinery vibration.

  • PDF

Vibration Analyses of the STSAT-3 Satellite (과학기술위성 3 호 진동해석)

  • Cho, Hee-Keun;Suh, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.502-507
    • /
    • 2008
  • An entire composite structure satellite is developing for the first time in Korea. All of the structure is made of CFRP-composite faced aluminum honeycomb sandwich structure. Here the random and sinusoidal spectrum analysis of the satellite was carried out by using the finite element method. The general spectrum analysis was herein performed but also the PSD (power spectrum density) function for random vibration analysis had been transformed into equivalent time domain function and then transient analysis is conducted. The time history of displacement, acceleration, stress and velocity responses with respect to the PSD input has been achieved by the time dependent transient function transformed from frequency PDS function. It enables one to perform dynamic durability analysis and then expect the life time of the composite structure. The composite faced sandwich structure's spectrum analysis of a domestically-developed satellite, STSAT-3, has been discussed in the present study.

  • PDF

A Study on Vibration Analysis Method Using the Global Structural Analysis Model (전선 구조해석 모델을 이용한 진동해석 방법에 관한 연구)

  • Park, Hyung-Sik;Choi, Su-Hyun;Lee, Yong-Sub
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.314-322
    • /
    • 2007
  • In general, the vibration and structural analyses have been carried out by using each finite element model separately because of different size of finite element mesh and different focusing area of each analysis. In some cases, however, it is required to perform both global vibration and structural analyses at the same time using a finite element model for global structural analysis, which asks for a special treatment for a vibration analysis. In this study, a technique to perform a global vibration analysis using a finite element model for a global structural analysis has been developed and its effectiveness has been verified by its application to a whole ship.

Vibration Analysis of a Deploying and Spinning Beam with a Time-dependent Spinning Speed (시간에 따라 변하는 회전 속도와 함께 회전하며 전개하는 보의 진동 분석)

  • Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.874-880
    • /
    • 2015
  • This paper presents the vibration analysis of a deploying beam with spin when the beam has a time-dependent spinning speed. In the previous studies for the deploying beams with spin, the spinning speed was time-independent. However, it is more reasonable to consider the time-dependent spinning speed. The present study introduces the time-dependent spinning speed in the modeling. The Euler-Bernoulli beam theory and von Karman nonlinear strain theory are used together to derive the equations of motion. After the equations of motion are transformed into the weak forms, the weak forms are discretized. The natural frequency and dynamic response are obtained. The effect of the time-dependent spinning speed on the dynamic response is studied.

A Study on Detecting Changes in Injection Molding Process through Similarity Analysis of Mold Vibration Signal Patterns (금형 기반 진동 신호 패턴의 유사도 분석을 통한 사출성형공정 변화 감지에 대한 연구)

  • Jong-Sun Kim
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.34-40
    • /
    • 2023
  • In this study, real-time collection of mold vibration signals during injection molding processes was achieved through IoT devices installed on the mold surface. To analyze changes in the collected vibration signals, injection molding was performed under six different process conditions. Analysis of the mold vibration signals according to process conditions revealed distinct trends and patterns. Based on this result, cosine similarity was applied to compare pattern changes in the mold vibration signals. The similarity in time and acceleration vector space between the collected data was analyzed. The results showed that under identical conditions for all six process settings, the cosine similarity remained around 0.92±0.07. However, when different process conditions were applied, the cosine similarity decreased to the range of 0.47±0.07. Based on these results, a cosine similarity threshold of 0.60~0.70 was established. When applied to the analysis of mold vibration signals, it was possible to determine whether the molding process was stable or whether variations had occurred due to changes in process conditions. This establishes the potential use of cosine similarity based on mold vibration signals in future applications for real-time monitoring of molding process changes and anomaly detection.

Study on the Nonstationary Behavior of Slider Air Bearing Using Reassigned Time -frequency Analysis (재배치 시간-주파수 해석을 이용한 슬라이더 공기베어링의 비정상 거동 연구)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.255-262
    • /
    • 2006
  • Frequency spectrum using the conventional Fourier analysis gives adequate information about the dynamic characteristics of the slider air bearing for the linear and stationary cases. The intermittent contacts for the extremely low flying height, however, generate nonlinear and nonstationary vibration at the instant of contact. Nonlinear dynamic model should be developed to simulate the impulse response of the air bearing during slider-disk contact. Time-frequency analysis is widely used to investigate the nonstationary signal. Several time-frequency analysis methods are employed and compared for the slider vibration signal caused by the impact against an artificially induced scratch on the disk. The representative Wigner-Ville distribution leads to the severe interference problem by cross terms even though it gives good resolution both in time and frequency. The smoothing process improves the interference problem at the expense of resolution. In order to get the results with good resolution and little interference, the reassignment method is proposed. Among others the reassigned Gabor spectrogram shows the best resolution and readability with negligible interference.