• 제목/요약/키워드: Vibration Method

검색결과 8,847건 처리시간 0.028초

미분구적법에 의한 Pasternak지반 위에 놓인 보-기둥의 자유진동 해석 (Free Vibration Analysis of Beam-columns Resting on Pasternak Foundation by Differential Quadrature Method)

  • 이태은;이병구;강희종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.957-962
    • /
    • 2004
  • This paper deals with the free vibration analysis of beam-columns resting on Pasternak foundation by the Differential Quadrature Method. Based on the differential equation subjected to the boundary conditions, adopted from the open literature, which governs the free vibrations of such member, this equation is applied to the Differential Quadrature Method. For computing natural frequencies, the numerical procedures are developed by QR Algorithm, in which the Chebyshev-Gauss-Lobatto method is used for choosing the grid points. The numerical methods developed herein for computing natural frequencies are programmed in FORTRAN code, and all solutions obtained in this study are quite agreed with those in the open literature.

  • PDF

전달강성계수법에 의한 보형구조물의 종.굽힘진동해석 (Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수;김용복
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

회전강성 최소화를 위한 절연요소의 형상 설계 (Shape Design for Viscoelastic Vibration Isolators to Minimize Rotational Stiffness)

  • 오환엽;김광준
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1250-1255
    • /
    • 2008
  • Design of shape fur visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is fi?equently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs, ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape, where density of either 0 or 1 for finite elements is used fur physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure is presented fur a mount of an air-conditioner compressor system and the effectiveness is discussed.

현이론을 이용한 사장교 케이블 장력산정 (Estimation of Stay Cable Tension Using String Vibration Theory)

  • 박연수;최선민;이병근;김민중
    • 한국방재학회 논문집
    • /
    • 제9권2호
    • /
    • pp.17-22
    • /
    • 2009
  • 사장교 케이블 장력 산정 방법에는 직접적인 방법과 간접적인 방법이 있는데 직접적인 방법은 정확성에 문제가 있을 뿐만 아니라 제한사항도 많다. 따라서 일반적으로 케이블 장력 추정은 간접적인 방법인 고유진동수를 이용하는 진동법을 사용하고 있다. 최근 시공된 사장교의 케이블에 대해 현이론을 이용한 진동법으로 케이블 장력을 산정해 그 결과를 다중진동모드를 이용한 진동법과 비교했다. 그 결과를 요약하면, 현이론 방법의 오차는 7차이하의 진동모드에서는 2%를 초과하지 않았다. 특히, 3차와 4차 진동모드의 오차는 1%를 초과하지 않았다. 그리고 진동모드의 차수가 증가하고 케이블 단면이 클수록 오차는 증가했고, 장력이 크고 케이블 길이가 길수록 오차는 낮아짐을 알 수 있었다. 즉 7차 이하의 진동모드에서 높은 정밀도를 갖는 다는 것을 알 수 있다.

연성보의 진동 인텐시티 측정 (Measurements of Vibration Intensity of a Coupled Beam)

  • 이효행;김창렬;길현권;이용현;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.728-731
    • /
    • 2005
  • The objective of this paper is to perform measurements of vibration intensity of a coupled beam. The propagation of flexural waves generates the out of plane vibration of the coupled beam. The longitudinal waves are generated due to the mode conversion at the structural joint of the coupled beam. The propagation of longitudinal waves generates the in plane vibration of the coupled beam. In order to identify the direction of vibrational power on the coupled beam, the in plane vibration intensity as well as the out of plane vibration intensity needs to be measured. The cross spectral method has been implemented to measure the in-plane vibration intensity as well as out of plane vibration intensity. The results shelved that the experimental method can be effectively used to measure the in-plane vibration intensity as well as the out of plane vibration intensity of coupled beams.

  • PDF

모드합성법을 이용한 공작기계구조물의 동적 거동 해석 (Dynamic Analysis of Machine Tool Structure by Mode Synthesis Method)

  • 이영우;성활경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.261-265
    • /
    • 2002
  • In the machining tool avoid vibration problem have an effect on high precision as well as statical and thermal characteristics. Therefore overcome this problem is essential to advance of machine tool and machining skill. Even though vibration arises owing to a variety of causes, in this paper vibration analysis of column as a major part of machine tool structures is presented. At this procedure vibration analysis applied to mode synthesis method using a attachment mode .

  • PDF

교량구간에서의 열차하중에 의한 지반진동 해석법 (Ground Vibration Analysis Methods for Train Transit on Bridges)

  • 윤정방;이종재;김두기;심종민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.357-364
    • /
    • 1998
  • In this paper, ground vibration analysis methods for train transit on bridges are studied. Train loads acting on the piers are evaluated considering the interactions between the trains and the bridge. The 2D in-plane wave propagation method and the axisymmetric wave propagation method are used in the ground vibration analysis, and then the results of the ground vibration are compared. A modified axisymmetric method is presented, which can consider the effect of the train loadings on a series of piers as the train moves.

  • PDF

구분모드합성법을 이용한 증기터빈$\cdot$발전기축계의 진동해석 (Vibration Analysis of Steam Turbine-Generator Rotor System Using Component Mode Synthesis Method)

  • 양보석;김용한;최병근;이현
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.401-408
    • /
    • 1999
  • A method is presented for the vibration analysis of steam turbine-generator rotor system based on the component mode synthesis method. The motion of each component of the system is described by superposing constraint mode associated with boundary coordinates and constrained normal modes associated with internal coordinates. This method using real fixed-interface modes allows for significant reduction in system model size while retaining the essential dynamic characteristics of the lower modes. The capability of this method is demonstrated in the natural frequency and unbalance response analysis of the steam turbine-generator rotor system in which the dynamics of the pedestal is considered. The results by the present method are compared with finite element method and trnasfer matrix method in terms of the accuracy and computing time.

  • PDF

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.