• 제목/요약/키워드: Vibration Localization

검색결과 144건 처리시간 0.022초

On mode localization of a weakly coupled beam system with spring-mass attachments

  • Huang, M.;Liu, J.K.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.13-24
    • /
    • 2012
  • There are a large number of papers in the literature dealing with the free vibration analysis of single/multi-span uniform beam with multiple spring-mass systems, but that of coupled multi-span beams carrying spring-mass attachments is rare. In this note, free vibration analysis of a weakly coupled beam system with spring-mass attachments is conducted. The mode localization and frequency loci veering phenomena of the coupled beam system are investigated. Studies show that for weakly coupled beam system with spring-mass attachments, the mode localization and frequency loci veering will occur once there is a disorder in the system.

Mode localization and frequency loci veering in a disordered coupled beam system

  • Lu, Z.R.;Liu, J.K.;Huang, M.
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.493-508
    • /
    • 2006
  • Vibration mode localization and frequency loci veering in disordered coupled beam system are studied in this paper using finite element analysis. Two beams coupled with transverse and rotational springs are examined. Small disorders in the physical parameters such as Young's modulus, mass density or span length of the substructure are introduced in the investigation of the mode localization and frequency loci veering phenomena. The effect of disorder in the elastic support on the mode localization phenomenon is also discussed. It is found that an asymmetric disorder in the weakly coupled system will lead to the occurrence of mode localization and frequency loci phenomena.

조화 외력을 받는 간단한 주기적 구조물의 동적 응답 국부화 (Dynamic Response Localization of Simple Periodic Structures Undertaking External Harmonic Forces)

  • 김재영;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.175-180
    • /
    • 2001
  • Dynamic response localization of simple mistuned periodic structures is presented in this paper Mistuning in periodic structures can cause forced responses that are much larger than those of perfectly tuned structures. So mistuning results in the critical impact on high cycle fatigue of structures. Thus, it is of great importance to predict the mistuned forced response in an efficient way. In this paper, forced responses of coupled pendulum systems are investigated to identify the localization effect of periodic structures. The effects of mistuning and damping on the maximum forced response are examined. It is found that certain conditions of mistuning and coupling can cause strong localization and the localization becomes significant under weak damping. It is also found that the maximum forced response increases as the number of Periodic structures increases.

  • PDF

One-Dimensional Search Location Algorithm Based on TDOA

  • He, Yuyao;Chu, Yanli;Guo, Sanxue
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.639-647
    • /
    • 2020
  • In the vibration target localization algorithms based on time difference of arrival (TDOA), Fang algorithm is often used in practice because of its simple calculation. However, when the delay estimation error is large, the localization equation of Fang algorithm has no solution. In order to solve this problem, one dimensional search location algorithm based on TDOA is proposed in this paper. The concept of search is introduced in the algorithm. The distance d1 between any single sensor and the vibration target is considered as a search variable. The vibration target location is searched by changing the value of d1 in the two-dimensional plane. The experiment results show that the proposed algorithm is superior to traditional methods in localization accuracy.

랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계 (Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error)

  • 김욱태;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.840-845
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure. For the mathematical convenience, the MEMS resonator is first modeled as a multi pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

  • PDF

랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계 (Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error)

  • 김욱태;이종원
    • 한국소음진동공학회논문집
    • /
    • 제15권8호
    • /
    • pp.931-938
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure For the mathematical convenience, the MEMS resonator is first modeled as a multi-pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

전치 신호처리를 통한 평판에서의 다중 충격의 위치 추적에 관한 연구 (Source Location of Multiple Impacts on the Plate Based on Pre-signal Processing)

  • 문유성;박홍석;이상권;신기홍;이영섭
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.220-226
    • /
    • 2011
  • This paper presents the novel work for source localization of serial multiple impacts in a plate sructure. It is difficult to identify the source of serial multiple impacts with the current source localization techenology(SLT) because of the overlapping of dispersive wave induced by multiple impacts and the reflaction from the edge of the plate. In this paper, the new method is suggested for source localization. The method is developed based on the SLT with pre-signal processing such as some limitation for the selection of three sensors, the frequency range for TFA and impact time interval. Results from numerical simulation and experiment in isotropic plate structure are presented, which show the capability of the proposed method.

평판 및 셸에서의 파동 전파 군속도 비교 (Comparison of the Wave Propagation Group Velocity in Plate and Shell)

  • 이정한;박진호
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.483-491
    • /
    • 2016
  • Precision of theoretical group velocity of waves in shell structures was discussed for the purpose of source localization of loose parts impact in pressure vessels of nuclear power plants. Estimating exact location of loose parts impact inside a reactor or a steam generator is very important in safety management of a NPP. Evaluation of correct propagation velocity of impact signals in pressure vessels, most of which are shell structures, is essential in impact source localization. Theoretical group velocities of impact signals in a plate and a shell were calculated by wave equations and compared to the velocities measured experimentally in a plate specimen and a scale model of a nuclear reactor. The wave equation applicable to source localization algorithm in shell structures was chosen by the study.

단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정 (Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques)

  • 조성종;정현조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.715-722
    • /
    • 2012
  • A structural health monitoring (SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal (TR) and inverse filtering (IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

  • PDF

Particle Swarm Optimization based Haptic Localization of Plates with Electrostatic Vibration Actuators

  • Gwanghyun Jo;Tae-Heon Yang;Seong-Yoon Shin
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.127-132
    • /
    • 2024
  • Haptic actuators for large display panels play an important role in bridging the gap between the digital and physical world by generating interactive feedback for users. However, the generation of meaningful haptic feedback is challenging for large display panels. There are dead zones with low haptic sensations when a small number of actuators are applied. In contrast, it is important to control the traveling wave generated by the actuators in the presence of multiple actuators. In this study, we propose a particle swarm optimization (PSO)-based algorithm for the haptic localization of plates with electrostatic vibration actuators. We modeled the transverse displacement of a plate under the effect of actuators by employing the Kirchhoff-Love plate theory. In addition, starting with twenty randomly generated particles containing the actuator parameters, we searched for the optimal actuator parameters using a stochastic process to yield localization. The capability of the proposed PSO algorithm is reported and the transverse displacement has a high magnitude only in the targeted region.