• Title/Summary/Keyword: Vibration Identification

Search Result 842, Processing Time 0.029 seconds

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정)

  • Kim, H.J.;Yu, E.J.;Kim, H.G.;Chang, K.K.;Lee, S.H.;Cho, S.H.;Chung, L.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).

Identification of frequency determining sound generating organ of cicadas with the Helmholtz resonator structure (헬름홀쯔 공명기 구조 매미 소리의 주파수 결정 발음기관 규명)

  • Yoon, Ki-sang;Cho, Se-hyun;Jung, Yoon-sang;Lee, Dong-hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.276-283
    • /
    • 2018
  • The purpose of the study is to identify a sound generating organ that has a major influence on the central frequency of the cicadas with the Helmholtz resonator structure for the first time. The sound of cicadas Cryptotympana atrata and Hyalessa fuscata were recorded and analyzed, then the motion of the tymbals was analyzed with a high-speed camera to compare the relationship between the frequency of sound and the motion of the tymbals. As a result, there was little difference in the frequency distribution of calling song and scream for two species. The tymbals of C. atrata oscillated in three vibration modes, while those of H. fuscata oscillated in one mode. There was no difference in the frequency of both tymbals of both cicadas, and three vibration modes of C. atrata generated sound with different frequency bands. The frequency band of tymbals and the central frequency band of calling song were very similar. In conclusion, it is presumed that the frequency of the cicadas with the Helmholtz resonator structure was determined by mode frequency of the tymbals than resonance condition of the abdomen.

A study on Mass production stage Tank Battle Management System Environmental Stress Screening test method and application improvement based on Production process data (생산 공정 자료 기반 양산단계 전차 전장관리체계 환경 부하 선별 시험 방법 및 적용 개선에 관한 연구)

  • Kim, Jang-Eun;Shim, Bo-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.273-288
    • /
    • 2015
  • Purpose: In this study, we apply environmental stress screening (ESS) to battle management system (BMS) of a tank and use the ESS profile based on production process data, guided by MIL-HDBK-781/344/2164. Methods: To optimize ESS Profile of the BMS of a tank, we estimate ESS model parameters (e.g., defect density, screening strength) using primary production failure reporting and corrective action system (FRACAS) data of military supply contract firm. Results: First, we collect the Primary production FRACAS data of military supply contract firm. Second, we compute curve fitting approach to find patent defect density and latent defect density using FRACAS data. Third, we solve the equation of Defect Density(patent defect density + latent defect density)($D_{IN}$) and Screening Strength(SS) Using second step data. As a result of analysis according to the order, we calculate $D_{IN}$(Temperature stress case : 74.02, Vibration stress : 10.252) and : SS(Temperature stress case : 0.4632, Vibration stress : 0.4142) and confirm the Condition II-D based on MIL-HDBK-344. According to Condition II-D, it is necessary to modify existing ESS profile through decreasing the $D_{IN}$ and increasing the SS. Conclusion: Identification of defect causes through ESS approach reduce defect densities for production. It provides feedback to a lessons-learned data base to avoid similar problems on next generation tank BMS.

Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition (제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Vibration characteristics change of a base-isolated building with semi-active dampers before, during, and after the 2011 Great East Japan earthquake

  • Dan, Maki;Ishizawa, Yuji;Tanaka, Sho;Nakahara, Shuchi;Wakayama, Shizuka;Kohiyama, Masayuki
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.889-913
    • /
    • 2015
  • Structural vibration characteristics of a semi-active base-isolated building were investigated using seismic observation records including those of the 2011 Great East Japan earthquake (Tohoku earthquake). Three different types of analyses were conducted. First, we investigated the long-term changes in the natural frequencies and damping factors by using an ARX model and confirmed that the natural frequency of the superstructure decreased slightly after the main shock of the Tohoku earthquake. Second, we investigated short-term changes in the natural frequencies and damping factors during the main shock by using the N4SID method and observed different transition characteristics between the first and second modes. In the second mode, in which the superstructure response is most significant, the natural frequency changed depending on the response amplitude. In addition, at the beginning of the ground motion, the identified first natural frequency was high possibly as a result of sliding friction. Third, we compared the natural frequencies and damping factors between the conditions of a properly functional semi-active control system and a nonfunctional system, by using the records of the aftershocks of the Tohoku earthquake. However, we could not detect major differences because the response was probably influenced by sliding friction, which had a more significant effect on damping characteristics than did the semi-active dampers.

Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.463-479
    • /
    • 2007
  • A series of wind tunnel sectional model dynamic tests of a twin-deck bridge were conducted at the CLP Power Wind/Wave Tunnel Facility (WWTF) of The Hong Kong University of Science and Technology (HKUST) to investigate the effects of gap-width on the self-excited vibrations and the dynamic and aerodynamic characteristics of the bridge. Five 2.9 m long models with different gap-widths were fabricated and suspended in the wind tunnel to simulate a two-degrees-of-freedom (2DOF) bridge dynamic system, free to vibrate in both vertical and torsional directions. The mass, vertical frequency, and the torsional-to-vertical frequency ratio of the 2DOF systems were fixed to emphasize the effects of gap-width. A free-vibration test methodology was employed and the Eigensystem Realization Algorithm (ERA) was utilized to extract the eight flutter derivatives and the modal parameters from the coupled free-decay responses. The results of the zero gap-width configuration were in reasonable agreement with the theoretical values for an ideal thin flat plate in smooth flow and the published results of models with similar cross-sections, thus validating the experimental and analytical techniques utilized in this study. The methodology was further verified by the comparison between the measured and predicted free-decay responses. A comparison of results for different gap-widths revealed that variations of the gap-width mainly affect the torsional damping property, and that the configurations with greater gap-widths show a higher torsional damping ratio and hence stronger aerodynamic stability of the bridge.

Identification of Intellectual Structure of Science and Technology in North Korea using by Author Co-citation Analysis (저자 동시인용 분석을 이용한 북한 과학기술의 지적 구조 규명에 관한 연구)

  • Noh, Kyungran;Choi, Hyunkyoo
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.31 no.4
    • /
    • pp.169-190
    • /
    • 2020
  • The purpose of this paper is to analyze academic papers published by North Korean scientists, to uncover major areas of research in North Korean science and technology, and to uncover the intellectual structures that underlie these science and technology. Through quantitative analysis, it is to find out who the main research actors are, what research areas are being dealt with, which research areas last a long time, which areas have been discontinued, and which research areas are receiving new attention. In order to detect major research areas and intellectual bases in North Korean science and technology, North Korean scientists' articles were collected from WoS (SCIE). CiteSpace, a scientific quantitative analysis tool, was used to identify major research areas based on author simultaneous citation analysis. The main research areas in North Korea are found to be material properties, vibration analysis, incline matrice, sodium cointercalation, and external magnetic field.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Design and experimental characterization of a novel passive magnetic levitating platform

  • Alcover-Sanchez, R.;Soria, J.M.;Perez-Aracil, J.;Pereira, E.;Diez-Jimenez, E.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.499-512
    • /
    • 2022
  • This work proposes a novel contactless vibration damping and thermal isolation tripod platform based on Superconducting Magnetic Levitation (SML). This prototype is suitable for cryogenic environments, where classical passive, semi active and active vibration isolation techniques may present tribological problems due to the low temperatures and/or cannot guarantee an enough thermal isolation. The levitating platform consists of a Superconducting Magnetic Levitation (SML) with inherent passive static stabilization. In addition, the use of Operational Modal Analysis (OMA) technique is proposed to characterize the transmissibility function from the baseplate to the platform. The OMA is based on the Stochastic Subspace Identification (SSI) by using the Expectation Maximization (EM) algorithm. This paper contributes to the use of SSI-EM for SML applications by proposing a step-by-step experimental methodology to process the measured data, which are obtained with different unknown excitations: ambient excitation and impulse excitation. Thus, the performance of SSI-EM for SML applications can be improved, providing a good estimation of the natural frequency and damping ratio without any controlled excitation, which is the main obstacle to use an experimental modal analysis in cryogenic environments. The dynamic response of the 510 g levitating platform has been characterized by means of OMA in a cryogenic, 77 K, and high vacuum, 1E-5 mbar, environment. The measured vertical and radial stiffness are 9872.4 N/m and 21329 N/m, respectively, whilst the measured vertical and radial damping values are 0.5278 Nm/s and 0.8938 Nm/s. The first natural frequency in vertical direction has been identified to be 27.39 Hz, whilst a value of 40.26 Hz was identified for the radial direction. The determined damping values for both modes are 0.46% and 0.53%, respectively.