Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.3.499

Design and experimental characterization of a novel passive magnetic levitating platform  

Alcover-Sanchez, R. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala)
Soria, J.M. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala)
Perez-Aracil, J. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala)
Pereira, E. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala)
Diez-Jimenez, E. (Mechanical Engineering Area - Signal Theory and Communications Department, Universidad de Alcala)
Publication Information
Smart Structures and Systems / v.29, no.3, 2022 , pp. 499-512 More about this Journal
Abstract
This work proposes a novel contactless vibration damping and thermal isolation tripod platform based on Superconducting Magnetic Levitation (SML). This prototype is suitable for cryogenic environments, where classical passive, semi active and active vibration isolation techniques may present tribological problems due to the low temperatures and/or cannot guarantee an enough thermal isolation. The levitating platform consists of a Superconducting Magnetic Levitation (SML) with inherent passive static stabilization. In addition, the use of Operational Modal Analysis (OMA) technique is proposed to characterize the transmissibility function from the baseplate to the platform. The OMA is based on the Stochastic Subspace Identification (SSI) by using the Expectation Maximization (EM) algorithm. This paper contributes to the use of SSI-EM for SML applications by proposing a step-by-step experimental methodology to process the measured data, which are obtained with different unknown excitations: ambient excitation and impulse excitation. Thus, the performance of SSI-EM for SML applications can be improved, providing a good estimation of the natural frequency and damping ratio without any controlled excitation, which is the main obstacle to use an experimental modal analysis in cryogenic environments. The dynamic response of the 510 g levitating platform has been characterized by means of OMA in a cryogenic, 77 K, and high vacuum, 1E-5 mbar, environment. The measured vertical and radial stiffness are 9872.4 N/m and 21329 N/m, respectively, whilst the measured vertical and radial damping values are 0.5278 Nm/s and 0.8938 Nm/s. The first natural frequency in vertical direction has been identified to be 27.39 Hz, whilst a value of 40.26 Hz was identified for the radial direction. The determined damping values for both modes are 0.46% and 0.53%, respectively.
Keywords
cryogenics; dynamic response; levitating platform; magnetic damping; passive magnetic levitation;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Perez-Diaz, J.L., Valiente-Blanco, I., Diez-Jimenez, E. and Sanchez-Garcia-Casarrubios, J. (2014b), "Superconducting noncontact device for precision positioning in cryogenic environments", IEEE/ASME Transact. Mechatron., 19(2), 598-605. https://doi.org/10.1109/TMECH.2013.2250988   DOI
2 Cara, F.J., Carpio, J., Juan, J. and Alarcon, E. (2012), "An approach to operational modal analysis using the expectation maximization algorithm", Mech. Syst. Signal Process., 31, 109-129. https://doi.org/10.1016/j.ymssp.2012.04.004   DOI
3 Ohashi, S. and Ueshima, T. (2012), "Control method of the semi-active damper coil system in the superconducting magnetically levitated bogie against vertical and pitching oscillation", IEEE Transact. Magnet., 48(11), 4542-4545. https://doi.org/10.1109/TMAG.2012.2202378   DOI
4 Niu, Y., Kraemer, P. and Fritzen, C.P. (2012), "Operational modal analysis for Canton Tower", Smart Struct. Syst., Int. J., 10(4), 393-410. https://doi.org/10.12989/sss.2012.10.4_5.393   DOI
5 Preumont, A. (2018), Vibration control of active structures: An introduction, Springer International Publishing. https://books.google.es/books?id=oHNLDwAAQBAJ
6 Perez-Diaz, J.L., Valiente-Blanco, I., Cristache, C., Sanchez-Garcia-Casarubios, J., Rodriguez, F., Esnoz, J. and Diez-Jimenez, E. (2019), "A novel high temperature eddy current damper with enhanced performance by means of impedance matching", Smart Mater. Struct., 28(2), p. 25034. https://doi.org/10.1088/1361-665X/aafc11   DOI
7 Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures - theory and applications: A review of recent advances", J. Intell. Mater. Syst. Struct., 23(11), 1181-1195. https://doi.org/10.1177/1045389X12445029   DOI
8 Yu, J.H., Postrekhin, E., Ma, K.B., Chu, W.K. and Wilson, T. (1999), "Vibration isolation for space structures using HTS-magnet interaction", IEEE Transact. Appl. Supercond., 9(2 PART 1), 908-910. https://doi.org/10.1109/77.783444   DOI
9 Perez-Diaz, J.L., Diez-Jimenez, E., Valiente-Blanco, I., Cristache, C., Alvarez-Valenzuela, M.-A., Sanchez-Garcia-Casarrubios, J., Ferdeghini, C., Canepa, F., Hornig, W., Carbone, G., Plechacek, J., Amorim, A., Frederico, T., Gordo, P., Abreu, J., Sanz, V., Ruiz-Navas, E.-M. and Martinez-Rojas, J.-A. (2015), "Performance of magnetic-superconductor non-contact harmonic drive for cryogenic space applications", Machines, 3(3), 138-156. https://doi.org/10.3390/machines3030138   DOI
10 Valiente-Blanco, I., Diez-Jimenez, E., Sanchez-Garcia-Casarrubios, J. and Perez-Diaz, J.L. (2015), "Improving Resolution and Run Outs of a Superconducting Noncontact Device for Precision Positioning", IEEE/ASME Transact. Mechatron., 20(4), 1992-1996. https://doi.org/10.1109/TMECH.2014.2351493   DOI
11 Van Overschee, P. and De Moor, B.L. (1996), Subspace Identification for Linear Systems, Kluwer Academic, Boston, MA, USA.
12 Bauer, D. (2005), "Asymptotic properties of subspace estimators", Automatica, 41(3), 359-376. https://doi.org/10.1016/j.automatica.2004.11.012   DOI
13 Li, J.Y., Zhu, S. and Shen, J. (2019), "Enhance the damping density of eddy current and electromagnetic dampers", Smart Struct. Syst., Int. J., 24(1), 15-26. https://doi.org/10.12989/sss.2019.24.1.015   DOI
14 Ashkarran, A.A. and Mahmoudi, M. (2020), "Magnetic Levitation Systems for Disease Diagnostics", Trends Biotechnol., 1-11. https://doi.org/10.1016/j.tibtech.2020.07.010   DOI
15 Bastaits, R., Rodrigues, G., Mokrani, B. and Preumont, A. (2009), "Active optics of large segmented mirrors: dynamics and control", J. Guid. Control Dyn., 32(6), 1795-1803. https://doi.org/10.2514/1.44041   DOI
16 Busch-Vishniac, I.J. (1990), "Applications of Magnetic Levitation-Based Micro-Automation in Semiconductor Manufacturing", IEEE Transact. Semicond. Manuf., 3(3), 109-115. https://doi.org/10.1109/66.56563   DOI
17 McLachlan, G. and Krishnan, T. (2007), The EM algorithm and extensions, Vol. 382, John Wiley & Sons.
18 Casciati, F. and Domaneschi, M. (2007), "Semi-active electro-inductive devices: characterization and modelling", J. Vib. Control, 13(6), 815-838. https://doi.org/10.1177/1077546307077465   DOI
19 Casciati, F. and Giuliano, F. (2009), "Performance of multi-TMD in the towers of suspension bridges", J. Vib. Control, 15(6), 821-847. https://doi.org/10.1177/1077546308091455   DOI
20 Chang, C.M. and Chou, J.Y. (2020), "Modal tracking of seismically-excited buildings using stochastic system identification", Smart Struct. Syst., Int. J., 26(4), 419-433. https://doi.org/10.12989/sss.2020.26.4.419   DOI
21 Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525   DOI
22 Diez-Jimenez, E. and Perez-Diaz, J.L. (2011), "Flip effect in the orientation of a magnet levitating over a superconducting torus in the Meissner state", Physica C: Superconduct., 471(1-2), 8-11. https://doi.org/10.1016/j.physc.2010.10.008   DOI
23 Cansiz, A. (2009), "Vertical, radial and drag force analysis of superconducting magnetic bearings", Supercond. Sci. Technol., 22(7), 075003. https://doi.org/10.1088/0953-2048/22/7/075003   DOI
24 Andersen, P. (1997), Identification of civil engineering structures using vector ARMA models, Aalborg University, Denmark.
25 MacLamore, V.R., Hart, G.C. and Stubbs, I.R. (1971), "Ambient vibration of two suspension bridges", J. Struct. Div. (ASCE), 97(ST10), 2567-2582. https://doi.org/10.1061/JSDEAG.0003026   DOI
26 Zeynalian, M., Ronagh, H.R. and Dux, P. (2012), "Analytical Description of Pinching, Degrading, and Sliding in a Bilinear Hysteretic System", J. Eng. Mech., 138(11), 1381-1387. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000442   DOI
27 Zhang, T., Wang, Y. and Tamura, A. (2009), "A frequency-spatial domain decomposition (FSDD) method for operational modal analysis", Mech. Syst. Signal Process., 24(5), 1227-1239. https://doi.org/10.1016/j.ymssp.2009.10.024   DOI
28 Chiuso, A. and Picci, G. (2004), "The asymptotic variance of subspace estimates", J. Econometrics, 118(1), 257-291. https://doi.org/10.1016/S0304-4076(03)00143-X   DOI
29 Kumar, P., Huang, Y., Toyserkani, E. and Khamesee, M.B. (2020), "Development of a Magnetic Levitation System for Additive Manufacturing: Simulation Analyses", IEEE Transact. Magnet., 56(8). https://doi.org/10.1109/TMAG.2020.2997759   DOI
30 Choi, Y.M. and Gweon, D.G. (2011), "A high-precision dual-servo stage using halbach linear active magnetic bearings", IEEE/ASME Transact. Mechatron., 16(5), 925-931. https://doi.org/10.1109/TMECH.2010.2056694   DOI
31 Ma, K.B., Postrekhin, Y.V. and Chu, W.K. (2003), "Superconductor and magnet levitation devices", Rev. Sci. Instrum., 74(12), 4989-5017. https://doi.org/10.1063/1.1622973   DOI
32 Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F.K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., Int. J., 23(5), 421-428. https://doi.org/10.12989/sss.2019.23.5.421   DOI
33 Diez-Jimenez, E., Perez-Diaz, J.L., Ferdeghini, C., Canepa, F., Bernini, C., Cristache, C., Sanchez-Garcia-Casarrubios, J., Valiente-Blanco, I., Ruiz-Navas, E.M. and Martinez-Rojas, J.A. (2018), "Magnetic and morphological characterization of Nd2Fe14B magnets with different quality grades at low temperature 5-300 K", J. Magnet. Magnet. Mater., 451, 549-553. https://doi.org/10.1016/j.jmmm.2017.11.109   DOI
34 Diez-Jimenez, E., Rizzo, R., Gomez-Garcia, M.J. and Corral-Abad, E. (2019b), "Review of passive electromagnetic devices for vibration damping and isolation", Shock Vib., 2019. https://doi.org/10.1155/2019/1250707   DOI
35 Diez-Jimenez, Efren, Alen-Cordero, C., Alcover-Sanchez, R. and Corral-Abad, E. (2021), "Modelling and test of an integrated magnetic spring-eddy current damper for space applications", Actuators, 10(1), 1-18. https://doi.org/10.3390/act10010008   DOI
36 Hull, J.R. (2000), "Superconducting bearings", Supercond. Sci. Technol., 13, R1-R15.   DOI
37 Jamshidi, M., Chang, C.C. and Bakhshi, A. (2017), "Self-powered hybrid electromagnetic damper for cable vibration mitigation", Smart Struct. Syst., Int. J., 20(3), 285-301. https://doi.org/10.12989/sss.2017.20.3.285   DOI
38 Jimenez-Alonso, J., Perez-Aracil, J., Hernandez Diaz, A. and Saez, A. (2019), "Effect of Vinyl flooring on the modal properties of a steel footbridge", Appl. Sci., 9(7), 1374. https://doi.org/10.3390/app9071374   DOI
39 Rivin, E.I. (1995), "Vibration isolation of precision equipment", Precision Eng., 17(1), 41-56. https://doi.org/10.1016/0141-6359(94)00006-L   DOI
40 Riabzev, S., Veprik, A., Vilenchik, H. and Pundak, N. (2009), "Control of dynamic disturbances produced by a pulse tube refrigerator in a vibration-sensitive instrumentation", Cryogenics, 49(1), 7-11. https://doi.org/10.1016/j.cryogenics.2008.08.010   DOI
41 Shen, W., Zhu, S., Zhu, H. and Xu, Y.L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., Int. J., 18(3), 449-470. https://doi.org/10.12989/sss.2016.18.3.449   DOI
42 Siyambalapitiya, C., De Pasquale, G. and Soma, A. (2012), "Experimental identification of rare-earth magnetic suspensions for micro and meso scale levitating systems", Smart Struct. Syst., Int. J., 10(2), 181-192. https://doi.org/10.12989/sss.2012.10.2.181   DOI
43 Olaru, R., Arcire, A., Petrescu, C., Mihai, M.M. and Girtan, B. (2017), "A novel vibration actuator based on active magnetic spring", Sensors Actuators, A: Phys., 264, 11-17. https://doi.org/10.1016/j.sna.2017.07.041   DOI
44 Kaloop, M.R., Elsharawy, M., Abdelwahed, B., Hu, J.W. and Kim, D. (2020), "Performance assessment of bridges using short-period structural health monitoring system: Sungsu bridge case study", Smart Struct. Syst., Int. J., 26(5), 667-680. https://doi.org/10.12989/sss.2020.26.5.667   DOI
45 Diez-Jimenez, E., Alcover-Sanchez, R., Pereira, E., Gomez Garcia, M.J. and Vian, P.M. (2019a), "Design and test of cryogenic cold plate for thermal-vacuum testing of space components", Energies, 14(15). https://doi.org/10.3390/en12152991   DOI
46 Gauss, S., Albering, J.H., Bock, J., Kesten, M., Fieseler, H., Canders, W.R., May, H., Freyhardt, H.C. and Ullrich, M. (1999), "Cryotank with superconducting, magnetic suspension of the interior tank", IEEE Transact. Appl. Supercond., 9(2 PART 1), 1004-1007. https://doi.org/10.1109/77.783468   DOI
47 Diez-Jimenez, Efren, Sanchez-Montero, R. and Martinez-Munoz, M. (2017), "Towards miniaturization of magnetic gears: Torque performance assessment", Micromachines, 9(1). https://doi.org/10.3390/mi9010016   DOI
48 Jacobsen, N.J., Andersen, P. and Brincker, R. (2008), "Applications of frequency domain curve-fitting in the EFDD technique", Conference Proceedings: IMAC-XXVI: A Conference & Exposition on Structural Dynamics.
49 Park, S.B. and Jang, S.J. (2020), "Design method for the 2DOF electromagnetic vibrational energy harvester", Smart Struct. Syst., Int. J., 25(4), 393-399. https://doi.org/10.12989/sss.2020.25.4.393   DOI
50 Perez-Diaz, J.L., Garcia-Prada, J.C., Diez-Jimenez, E., Valiente-Blanco, I., Sander, B., Timm, L., Sanchez-Garcia-Casarrubios, J., Serrano, J., Romera, F., Argelaguet-Vilaseca, H. and Gonzalez-de-Maria, D. (2012), "Non-contact linear slider for cryogenic environment", Mech. Mach. Theory, 49(7), 308-314. https://doi.org/10.1016/j.mechmachtheory.2011.09.002   DOI
51 Perez-Diaz, J., Diez-Jimenez, E., Valiente-Blanco, I., Cristache, C. and Sanchez-Garcia-Casarrubios, J. (2014a), "Contactless mechanical components: gears, torque limiters and bearings", Machines, 2(3), 312-324. https://doi.org/10.3390/machines2040312   DOI
52 Valiente-Blanco, I., Diez-Jimenez, E., Cristache, C., Alvarez-Valenzuela, M.A. and Perez-Diaz, J.L. (2014), "Characterization and improvement of axial and radial stiffness of contactless thrust superconducting magnetic bearings", Tribology Lett., 54(3), 213-220. https://doi.org/10.1007/s11249-013-0204-0   DOI
53 Valiente-Blanco, I., Diez-Jimenez, E. and Perez-Diaz, J.L. (2013), "Engineering and performance of a contactless linear slider based on superconducting magnetic levitation for precision positioning", Mechatronics, 23(8), 1051-1060. https://doi.org/10.1016/J.MECHATRONICS.2013.07.011   DOI